
MONGODB AGGREGATE FUNCTIONS EXPLAINED

This is the second part of the tutorial on how to use NodeJS with MongoDB. Here we switch to using
the regular MongoDB shell and commands to make the study of aggregate functions simpler.

To show how to use aggregate functions, we will first explain how to do basic queries. Then we will
show how to do the WordCount program, which is what people start with when they are first
learning, for example, Apache Spark.

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

Basically, there are two aggregate functions: aggregate and MapReduce. Aggregate functions are
the same as the familiar SQL command:

SQL select xxx, count (xxx) from table group by xxx

The aggregate functions are count, sum, average, min, max, etc.

The data that we used in the first part was smoker survey date. It has a complex structure. Recall
that the schema is this:

var schema = new mongoose.Schema({
cachedContents : {
largest : String,
non_nill : Number,
nill : Number,
tip : ,
smallest : String,
format : {

https://blogs.bmc.com/blogs/how-to-use-mongoose-for-mongodb-and-nodejs/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/

displayStyle : String,
align : String
}
}
});

And the sample data looks like this:

"_id" : ObjectId("59e9a6144bde260fa07e68f1"),
"cachedContents" : {
"nill" : 0,
"non_nill" : 14069,
"largest" : "WY",
"tip" :
},
"__v" : 0
}

That is complicated to work with, since it has an array of embedded documents: tip:. So we will first
show how to query this data, then we will make simpler data to show the aggregate and mapreduce
functions.

Simple Queries
A simple find query will output all fields. Like this:

db.smokersmodels.find({ "cachedContents.largest" : "2016" }).pretty()

"_id" : ObjectId("59e9a6144bde260fa07e6fda"),
"cachedContents" : {
"nill" : 0,
"non_nill" : 14069,
"largest" : "2016",
"tip" :

Word Count
Now we make some simpler data to illustrate how to do the WordCount program with MongoDB.

First, create some data:

db.words.insertMany();

They print it out to see what it looks like:

db.words.find().pretty()
{ "_id" : ObjectId("59eb051e878eb4d6aca74243"), "word" : "the" }
{ "_id" : ObjectId("59eb051e878eb4d6aca74244"), "word" : "rain" }
{ "_id" : ObjectId("59eb051e878eb4d6aca74245"), "word" : "in" }
{ "_id" : ObjectId("59eb051e878eb4d6aca74246"), "word" : "spain" }

{ "_id" : ObjectId("59eb051e878eb4d6aca74247"), "word" : "spain" }

The trick with the WordCount program has always been to make the (key,value) pairs (word, 1) and
then sum the number 1:

db.words.aggregate()

{ "_id" : "in", "cnt" : 1 }
{ "_id" : "rain", "cnt" : 1 }
{ "_id" : "spain", "cnt" : 2 }
{ "_id" : "the", "cnt" : 1 }

As you can see, the word spain occurs 2 times.

MapReduce
Doing this with mapReduce basically does the same thing. We first create (key,value) pairs (word, 1)
using the emit function. Then we use the JavaScript Array.sum function to sum the number 1.

db.words.mapReduce(
function() { emit(this.word,1); },

 function(key, values) {return Array.sum(values)}, {
query:{},

 } out:"total_matches"
).find()

{ "_id" : "in", "value" : 1 }
{ "_id" : "rain", "value" : 1 }
{ "_id" : "spain", "value" : 2 }
{ "_id" : "the", "value" : 1 }

The result is the same.

Additional Resources
Mongodb Aggregation Pipeline from zahid-mian

https://www.slideshare.net/zahid-mian/mongodb-aggregation-pipeline
https://www.slideshare.net/zahid-mian

