
WHAT IS SERVER AUTOMATION? SERVER AUTOMATION
EXPLAINED

Traditional server management can include hundreds of infrastructure elements managed by
several systems and teams over various data centers. It’s a complex network, often leading to
delays and small errors in a time when the pressures on business technology are only growing.
Businesses frequently demand a shift away from discrete devices in favor of delivering enterprise-
wide services with greater flexibility, speed, and efficiency. But doing more with the same old tools
just won’t cut it. Server automation can reduce the complexity of manual server management while
simultaneously increasing efficiency and effectiveness.

Server automation consolidates task and process automation into a single solution for more efficient
application deployment as well as ongoing management across virtual and physical systems. It
enables end-to-end management through the creation of workflows that automatically coordinate
tasks and processes, leading to a reduction in human-caused errors. It is particularly useful for small
developer teams who need to constantly keep production rolling to enable a continuous delivery
process.

Below you’ll find additional details on what server automation is, the benefits it can provide, and how
to get started.



Features and Benefits of Server Automation
Clean Architecture
The primary server-agent architecture of an automated server consists of a core and an agent. The
core is the physical server component which can run on one or multiple servers and saves
information about server configurations. Distributing the core components across multiple servers
scales the functionality while increasing performance.

Meanwhile, the agent side of the architecture is a software component that runs on the server’s
operating system. Its primary purpose is to communicate with the core, allowing the core to manage
the server’s life cycle.

Compare this to non-automated situations where a data center of thousands of servers requires
manual management through a long list of different tools. Installing a server automation core and
deploying server automation agents into an environment reduces these requirements and
streamlines management.

Secure and Reliable
With the simple automated architecture of server automation comes increased reliability. Humans
are naturally prone to mistakes and slip-ups for any number of reasons, but a machine performs to
perfection given proper programming. And this perfect performance frees up a good deal of time
and effort that the developer team would have previously devoted to checking for errors.

Because the team can worry less about double-checking, fewer users will need access to the
server. The automated server is essentially the only one that needs access, so it can eliminate risky
extended user access. Reduced access permissions and effective error checking lead to a secure
working environment for the developer team.

Easier and More Reliable Environment Setup
Speaking of user error, manual installation of servers can lead to unique setups and behaviors. While
uniqueness is beneficial in many contexts, it’s better to have homogenous servers that avoid the
emergence of distinct and unknown bugs.

Server automation allows such homogeneity, leading to more consistent performance. If there are
any bugs, they will be the same throughout all servers, thus being easily remedied. This results in a
consistent disaster recovery process when it comes to hardware problems.

Instant Feedback
As the developers work alongside server automation, they can take advantage of its all-seeing eye
to generate immediate notifications and reports based on every task the server completes. The
options for notification warnings are flexible in that they can be directed to the commit author
individually or the whole team.

For example, a developer committing code to the central repository for other team members to see
can receive warning notifications if the automated server determines that the commit causes
problems for the build. This addresses the problem at the source rather than allowing it to cause



further issues down the road, requiring the interference of other team members.

Use of Software Policies
Server automation allows for the modeling of software through the use of policies. Various
specifications can be included within a software policy, including which configurations will apply to
managed servers and which packages and patches will be installed, as well as users, groups, files,
and scripts.

There is also a framework within the server automation, ensuring compliance with defined policies.
The framework helps identify and fix specific instances where the server does not comply with the
software policies.

Range of Interfaces and Tools
You have a few options when it comes to making use of server automation. The most widely-used
tool by most server administrators is the SA Client. It is a Windows desktop application that uses java
for provisioning, policies, and software management. Similarly, there is the SAS Web Client that
provides a web-based interface where users can perform tasks such as server management, track
configuration changes, and manage user permissions.

Additionally, an SA Command Line Interface (OCLI) provides an efficient means of file management
within the software repository and a Data Center Markup Language (DCML). Exchange Tool is great
for transferring information from one core to another. For creating and uploading ISMs, the ISM
Development Kit contains various useful command-line libraries and tools.

Testing and Rollback of Deployments
One of the biggest issues many companies have is successfully packaging and delivering their
software to the customer. Larger companies usually turn to automation, but smaller teams might
see it as too great an expense or unnecessary for their smaller workload. That’s not the best
perspective to take, though, as many developers focus so much of their time on enhancing an app’s
features, they often neglect to make improvements in delivery. Server automation can help to
facilitate and speed up the deployment process in various ways, starting with the creation of test
environments.

Test environments that use the same processes as production enable test deployments where
developers can see new features perform before sending them to the final customer. This process
optimally reveals any bugs or malfunctions, thus enhancing the software quality of the final product.
Server automation also allows the implementation of a rollback process to avoid errors after the test
environment is replicated into production.


