
WHAT IS APACHE HCATALOG? HCATALOG EXPLAINED

Here we explain what HCatalog is and why it is useful to Hadoop programmers.

Basically, HCatalog provides a consistent interface between Apache Hive, Apache Pig, and
MapReduce. Since it ships with Hive, you could consider it an extension of Hive.

(We have written tutorials here on Apache Pig, MapReduce, and Hive.)

Why this Matters
To understand why this is important, consider that, for example, MapReduce programs run a map
and optional reduce operation over data values to produce key->value pairs. Apache Pig creates
tuples of data. And data stored in Hive is in table records, just like a relational database. So the three
have different ways of storing data. So they are not so easy to use together.

For example, an Apache Pig tuple can look like this:

(1, {(1,2,3,4,5), (1,2,3,4,5)})

MapReduce stores data in key->value pairs, like this:

{
name -> Walker Rowe,
Position -> freelance technical writer
}

https://blogs.bmc.com/blogs/hadoop-apache-pig/
https://blogs.bmc.com/blogs/hadoop-architecture/
https://blogs.bmc.com/blogs/hadoop-hive/

An Apache Hive table looks just like an RDBMS table created with a SQL command:

col_name data_type

station string

station_name string

wdate date

prcp float

wind float

snow float

Using Hive Metadata
How is HCatalog useful? One example is clear right away.

Once you use HCatalog then you no longer have to use file paths or even the schema as Hive knows
all about that. For example, the Pig statement below loads a file from a Hadoop file system and
specifies the schema.

a = LOAD 'hdfs://localhost:9000/user/hadoop/sales.csv' USING PigStorage(',') AS
(shop:chararray,employee:chararray,sales:int);

With HCatalog that becomes the far simpler:

a = LOAD ‘sales.csv’ using HCatLoader();

So how does a MapReduce programmer use that. Without HCatalog, they would have to write a
program to consume Apache Pig tuples stored on the Hadoop file system.

The goal of HCatalog is to allow Pig and MapReduce to be able to use the same data structures as
Hive. Then there is no need to convert data.

This concept is best visualized in these two graphic from HortonWorks

The first shows that all three products use Hadoop to store data. Hive stores its metadata (i.e.,
schema) in MySQL or Derby. The other two do that using code written into the programs and input
and output operations.

The second
graphic shows that HCatalog exposes Hive data and metadata to MapReduce and Pig directly. This
is done using the interfaces shown in yellow. The end result is that the user can work with Hive
tables as if they were MapReduce key->value pairs or Pig tuples.

All of this
supports sharing data between programs and programmers too. For example, data can be shared
with other programs as a REST web service as HCatalog exposes that. And when an Hcatalog task
finishes, it can create a JMS message to signal an Apache Pig program to run.

Interface Abstraction
In the words of Apache HCatalog, “HCatalog supports reading and writing files in any format for
which a SerDe (serializer-deserializer) can be written.” That means in addition to your own CSV,
JSON, RCFile, and SequenceFile, and ORC file formats you could write your own. For example, here
is a discussion of how to do that with Apache Hive.

Using HCatalog and Apache Pig
You can run Pig like this to tell it to use HCatalog.

pig -useHCatalog

Then it uses what is called HCatLoader to work with data managed by HCatalog. But to do this you
need to set the PIG_CLASSPATH and PIG_OPTS environment variables to tell Pig where to find the
HCatalog tables.

MapReduce
MapReduce code is usually Java code.

HCatalog HCatLoader and HCatStore are implementations of the Hadoop InputFormat and

https://cwiki.apache.org/confluence/display/Hive/SerDe

OutputFormat interfaces. That gives you org.apache.hadoop.mapreduce.RecordReader and
org.apache.pig.backend.hadoop.executionengine.mapReduceLayer to read data from Hive and
run the MapReduce operations over that. Then you save your results back into Hive.

HCatalog Partitions and the Hive Column-oriented Database
If you are familiar with Apache Cassandra, which we wrote about here, then you know that is a
column-oriented database. HCatalog does the same thing by letting you create partitions. The
whole point with column-oriented databases is you can group common fields on the same storage
for fast retrieval. That makes a lot more sense when you want to:

select one_field from table;

Instead of retrieving the whole table, you just retrieves columns that you need, boosting speed,
since the data is next to each other, and saving memory too. HCatalog does that by letting you
divide tables into files called partitions as well. So you can take advantage of this with Pig and
MapReduce by reading data much faster than you would with Pig LOAD or reading files using a
buffered stream from Hadoop.

Installation and using the HCatalog CLI
To use HCatalog, first install Hadoop and Hive. See the instructions on the Hadoop and Hive web
sites for that. It will take a while. My advise is to use MySQL instead of Apache Derby for the Hive
installation as many users have complained on StackOverflow about the difficulty of getting Derby
to work. That has been my experience is well.

Hcatalog is installed with Hive. So there is nothing to do to use it except:

export PATH=$PATH:$HIVE_HOME/hcatalog/bin
export HCAT_HOME=$HIVE_HOME/hcatalog

Now run hcat. It should echo some command line options and then return the command prompt.

Now you can run Hive DDL and SQL commands from the command prompt, like this command:

hcat -e 'show tables';

In this case, it will show you the weather table that we created in the article Apache Hive Beeline
Client, Import CSV File into Hive.

hcat -e 'describe weather';

station string

station_name string

wdate string

prcp float

wind int

snow int

https://blogs.bmc.com/blogs/hadoop-cassandra/
https://blogs.bmc.com/blogs/apache-hive-beeline-client-import-csv-file-into-hive/
https://blogs.bmc.com/blogs/apache-hive-beeline-client-import-csv-file-into-hive/

