
USING APACHE HIVE WITH ELASTICSEARCH

Here we explain how to use Apache Hive with ElasticSearch. We will copy an Apache webserver log
into ElasticSearch then use Hive SQL to query it.

Why do this? Hive lets you write user defined functions and use SQL (actually HQL) which is easier
to work with and provides more functions that ElasticSearch, whose query language is Lucene
Query. For example you can join sets of data with Hive. And you can run advanced analytics against
Hive using Spark ML (machine learning) or other tool.

As we pointed out before, some tutorials are written to show how to store Hive data in ElasticSearch.
But that is not logical as the whole goal of ES is to gather logs from webservers, firewalls, etc. and
put them in one place (ES) where they can be queried. This is for cybersecurity and operations
monitoring.

ElasticSearch provides the elasticsearch-hadoop connector to let you read (and write) ES
documents. What happens when you do that is creates data in Hive tables from ES. Hive does not
store the data in ES.

(This article is part of our ElasticSearch Guide. Use the right-hand menu to navigate.)

Install Hive
First, install Hive using these directions. After this MySQL will be running. If it is not you will get error
Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.

And install Hadoop.

Then download the Hive-Hadoop connector download a Hive-Hadoop connector and copy it to

https://blogs.bmc.com/blogs/cybersecurity/
https://blogs.bmc.com/blogs/elasticsearch-introduction/
https://blogs.bmc.com/blogs/hadoop-hive/
https://www.sisense.com/data-connectors/hadoop-via-hive/

$HIVE_HOME/lib

cp /home/walker/Documents/jars/elasticsearch-hadoop-5.5.2.jar $HIVE_HOME/lib

Start Hadoop using start-dfs.sh. It is only necessary to start Yarn too if you are running on a cluster.

Start Hive
Start hive using:

hive

Or you can run it in debug mode to see and then fix errors with your installation. For example if you
forget to copy the connector jar to the lib folder it will throw a class not found error.

hive --hiveconf hive.root.logger=DEBUG,console

You can also see stdout here /tmp/(your userid)/hive.log

Install ElasticSearch and Load Some Data
Explaining how to install ES is beyond the scope of this data. You can follow their instructions here.

Download Sample Data and Upload
We need some data to analyze. You can download a sample Apache log from here.

You will need to install unrar to unzip it:

unrar x apache-access_log.rar

Then copy this Apache logstash config from here and name it apache.conf. Put it in the root folder of
the logstash installation.

input {
file {
path => "/tmp/access_log"
start_position => "beginning"
}
}< filter {
if =~ "access" {
mutate { replace => { "type" => "apache_access" } }
grok {
match => { "message" => "%{COMBINEDAPACHELOG}" }
}
}
date {
match =>
}
}
output {

https://www.elastic.co/guide/en/elasticsearch/guide/current/running-elasticsearch.html
https://web.archive.org/web/20170709095438/https://www.monitorware.com/en/logsamples/download/apache-samples.rar
https://www.elastic.co/guide/en/logstash/current/config-examples.html

elasticsearch {
hosts =>
}
stdout { codec => rubydebug }
}

Then start logstash with that config file.

bin/logstash -f apache.conf

Then copy the data to the /tmp/access_log file path indicated in the apache.conf file.

cp access_log /tmp/

The screen will start to echo the output like this as logstash goes to work:

{
"path" => "/tmp/access_log",
"@timestamp" => 2017-09-21T12:16:33.346Z,
"@version" => "1",
"host" => "eurovps",
"message" => "d97082.upc-d.chello.nl - - \"GET /SpamAssassin.html HTTP/1.1\"
200 7368\r",
"type" => "apache_access",
"tags" => "_grokparsefailure"
]
}

Now if you query ES from the command line you should see the new index and document count:

curl http://localhost:9200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
yellow open logstash-2017.09.21 DBRrjIlvQtG67ddb7qUnxw 5 1 1550

Then open Kibana and see the data there as well.

Now tell Hive to read this data by creating a table like this:

CREATE EXTERNAL TABLE apachelog (
path string,
timex timestamp,
Version int,
Host string,
Message string,
Index string
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES('es.nodes.wan.only' = 'true', 'es.resource' =
'logstash-2017.09.21', 'es.query' = '?q=*');

es.resource is the ES index.
Es.nodes.wan.only will solve network connectivity problems (i.e., if Hive complains about that.)

Host will default to localhost.

ES will create this:

describe apachelog;
OK
path string from deserializer
timex timestamp from deserializer
version int from deserializer
host string from deserializer
message string from deserializer
index string from deserializer

Now, we did not set up grok correctly or it would have parsed the message field in Apache. But we

https://blogs.bmc.com/wp-content/uploads/2017/09/Using-Apache-Hive-with-ElasticSearch_Graphic_1.png

cal pull out the IP address ourselves like this:

select regexp_extract(message, '^({1,3}\\.){3}{1,3}',0) as ip from apachelog;

Now we can run a query to show which IP addresses have access the web server the most number
of times. We do this in two steps:

Create intermediate table iptab.1.
Query table iptab.2.

create table iptab as select regexp_extract(message, '^({1,3}\\.){3}{1,3}',0)
as ip from apachelog;

Here is the count:

select count(ip) as c, ip from iptab group by ip order by c desc;
452 64.242.88.10
270 10.0.0.153
20 207.195.59.160
14 128.227.88.79
14 212.92.37.62
13 203.147.138.233
12 195.246.13.119
7 145.253.208.9
7 142.27.64.35
4 194.151.73.43
4 61.165.64.6
4 80.58.14.235
4 208.247.148.12
3 67.131.107.5
3 61.9.4.61
3 80.58.33.42
2 200.160.249.68
1 80.58.35.111
1 66.213.206.2
1 64.246.94.152
1 64.246.94.141
1 4.37.97.186
1 219.95.17.51
1 216.139.185.45
1 213.181.81.4
1 200.222.33.33
1 195.230.181.122
1 195.11.231.210
1 12.22.207.235
1 212.21.228.26

