
WHAT IS TERRAFORM? TERRAFORM & ITS IAC ROLE EXPLAINED

Managing infrastructure is a core requirement for most modern applications. Even in PaaS or
serverless environments, there will still be components that require user intervention for
customization and management. With the ever-increasing complexity of software applications, more
and more infrastructure modifications are required to facilitate the functionality of the software.

It is unable to keep up with the rapid development cycles with manual infrastructure management. It
will create bottlenecks leading to delays in the delivery process.

Infrastructure as Code (IaC) has become the solution to this issue—allowing users to align
infrastructure changes with development. It also facilitates faster automated repeatable changes by
codifying all the infrastructure and configuration and managing them through the delivery pipeline.

Terraform is one of the leading platform agnostic IaC tools that allow users to define and manage
infrastructure as code. In this article, let’s dig into what Terraform is and how we can utilize it to
manage infrastructure at scale.

What is Infrastructure as Code?
Before moving into Terraform, we need to understand Infrastructure as Code. To put it simply, IaC
enables users to codify their infrastructure. It allows users to:

Create repeatable version-controlled configurations
Integrate them as a part of the CI/CD pipeline
Automate the infrastructure management

If an infrastructure change is needed in a more traditional delivery pipeline, the infrastructure team

https://blogs.bmc.com/blogs/what-is-it-infrastructure-and-what-are-its-components/
https://blogs.bmc.com/blogs/serverless-paas/
https://blogs.bmc.com/blogs/serverless-paas/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/infrastructure-as-code/
https://blogs.bmc.com/blogs/what-is-ci-cd/

will have to be informed. The delivery pipeline cannot proceed until the change is made to the
environment. Having an inflexible manual process will hinder the overall efficiency of the SDLC with
practices like DevOps leading to fast yet flexible delivery pipelines.

IaC allows infrastructure changes to be managed through a source control mechanism like Git and
integrated as an automated part of the CI/CD pipeline. It not only automates infrastructure changes
but also facilitates auditable changes and easy rollbacks of changes if needed.

What is Terraform?
Terraform is an open-source infrastructure as a code tool from HashiCorp. It allows users to define
both on-premises and cloud resources in human-readable configuration files that can be easily
versioned, reused, and shared. Terraform can be used to manage both low-level components (like
compute, storage, and networking resources) as well as high-level resources (DNS, PaaS, and SaaS
components).

Terraform is a declarative tool further simplifying the user experience by allowing users to specify
the expected state of resources without the need to specify the exact steps to achieve the desired
state of resources. Terraform manages how the infrastructure needs to be modified to achieve the
desired result.

Terraform is a platform-agnostic tool, meaning that it can be used across any supported provider.
Terraform accomplishes this by interacting with the APIs of cloud providers. When a configuration is
done through Terraform, it will communicate with the necessary platform via the API and ensure the
defined changes are carried out in the targeted platform. With more than 1,700 providers from
HasiCorp and the Terraform community available with the Terraform Registry, users can configure
resources from leading cloud providers like Azure, AWS, GCP, and Oracle Cloud to more domain-
specific platforms like Cloudflare, Dynatrace, elastic stack, datadog, and Kubernetes.

The Terraform workflow
The Terraform workflow is one of the simplest workflows only consisting of three steps to manage
any type of infrastructure. It provides users the flexibility to change the workflow to support their
exact implementation needs.

1. Write
The first stage of the workflow is where users create the configurations to define or modify the
underlying resources. It can be as simple as provisioning a simple compute instance in a cloud
provider to deploy a multi-cloud Kubernetes cluster. This writing part can be facilitated either

https://blogs.bmc.com/blogs/state-of-devops/
https://blogs.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://www.hashicorp.com/
https://blogs.bmc.com/blogs/microservice-vs-api/
https://registry.terraform.io/browse/providers

through HasiCorp Configuration Language (HCL), the default language to define resources or using
the Cloud Development Kit for Terraform (CDKTF) which allows users to define resources using any
supported common programming languages like Python, C#, Go, and Typescript.

2. Plan
This is the second stage of the workflow where Terraform will look at the configuration files and
create an execution plan. It enables users to see the exact charges that will happen to the
underlying infrastructure from what new resources are getting created, resourced, modified, and
deleted.

3. Apply
This is the final stage of the workflow which takes place if the plan is satisfactory once the user has
confirmed the changes. Terraform will carry out the changes to achieve the desired state in a
specific order respecting all the resource dependencies. It will happen regardless of whether you
have defined dependencies in the configuration. Terraform will automatically identify the resource
dependencies of the platform and execute the changes without causing issues.

Terraform uses the state to keep track of all the changes to the infrastructure and detect config
drifts. It will create a state file at the initial execution and subsequently update the state file with new
changes. This state file can be stored locally or in a remote-backed system like an s3 bucket.
Terraform always references this state file to identify the resources it manages and keep track of the
changes to the infrastructure.

Benefits of Terraform
Let’s look at why so many people appreciate Terraform

Declarative nature. A declarative tool allows users to specify the end state and the IaC tools
will automatically carry out the necessary steps to achieve the user configuration. It is in
contrast to other imperative IaC tools where users need to define the exact steps required to
achieve the desired state.
Platform agnostics. Most IaC tools like AWS CloudFormation and Azure Resource templates
are platform specific. Yet, Terraform allows users to use a single tool to manage infrastructure
across platforms with applications using many tools, platforms, and multi-cloud architectures.
Reusable configurations. Terraform encourages the creation of reusable configurations where
users can use the same configuration to provision multiple environments. Additionally
Terraform allows creating reusable components within the configuration files with modules.
Managed state. With state files keeping track of all the changes in the environment, all
modifications are recorded and any unnecessary changes will not occur unless explicitly
specified by the user. It can be further automated to detect any config drifts and automatically
fix the drift to ensure the desired state is met at all times.
Easy rollsbacks. As all configurations are version controlled and the state is managed, users
can easily and safely roll back most infrastructure configurations without complicated
reconfigurations.
Integration to CI/CD. While IaC can be integrated into any pipeline, Terraform provides a
simple three-step workflow that can be easily integrated into any CI/CD pipeline. It helps to

https://www.terraform.io/language/syntax/configuration
https://github.com/hashicorp/terraform-cdk
https://blogs.bmc.com/blogs/aws-cloudformation/
https://www.bmc.com/blogs/hybrid-cloud-vs-multi-cloud-whats-the-difference

completely automate the infrastructure management.

(Learn how to set up a CI/CD pipeline.)

How to use Terraform
You can start using Terraform by simply installing it in your local environment. Terraform supports
Windows, Linux, and macOS environments. It provides users the option to install manually using a
pre-compiled binary, or use a package manager like Homebrew on Mac, Chocolatey on Windows,
Apt/Yum on Linux. It offers users the flexibility to install Terraform in their environments and
integrate it into their workflows.

HashiCorp also provides a managed solution called Terraform Cloud. It provides users with a
platform to manage infrastructure on all supported providers without the hassle of installing or
managing Terraform itself. Terraform Cloud consists of features like;

Remote encrypted state storage
Direct CI/CD integrations
Fully remote and SOC2 compliant collaborative environment
Version Controls
Private Registry to store module and Policy as Code support to configure security and
compliance policies
Complete auditable environment.
Cost estimations before applying infrastructure changes in supported providers.

Additionally, Terraform Cloud is deeply integrated with other HasiCrop Cloud Platform services like
Vault, Consul, and Packer to manage secrets, provide service mesh and create images. All these
things allow users to manage their entire infrastructure using the HasiCorp platform.

Using Terraform to provision resources
Finally, let's look at a simple Terraform configuration. Assume you want to deploy a web server
instance in your AWS environment. It can be done by creating an HCL configuration similar to the
following.

terraform {

required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 3.74"
}
}
}
Specifiy the Provider
provider "aws" {
region = var.region
AWS Credentials

https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://cloud.hashicorp.com/products/terraform
https://cloud.hashicorp.com/

access_key = "xxxxxxxxxxxxx"
secret_key = "yyyyyyyyyyyyy"
default_tags {
tags = {
Env = "web-server"
Resource_Group = "ec2-instances"
}
}
}

Configure the Security Group

resource "aws_security_group" "web_server_access" {
name = "server-access-control-sg"
description = "Allow Access to the Server"
vpc_id = local.ftp_vpc_id
ingress {

from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks =
ipv6_cidr_blocks =
}
ingress {

from_port = 443
to_port = 443
protocol = "tcp"
cidr_blocks =
ipv6_cidr_blocks =
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks =
ipv6_cidr_blocks =

}

tags = {
Name = "server-access-control-sg"
}
}

Get the latest Ubuntu AMI

data "aws_ami" "ubuntu" {
most_recent = true
owners = # Canonical
filter {
name = "name"
values =
}
filter {

name = "virtualization-type"
values =
}
}

Elastic IP

resource "aws_eip" "web_server_eip" {
instance = aws_instance.web_server.id
vpc = true
tags = {
Name = "web-server-eip"
Imported = false
}
}

Web Server Instance

resource "aws_instance" "web_server" {

ami = data.aws_ami.ubuntu.id
instance_type = "t3a.small"
availability_zone = "eu-central-1a"
subnet_id = "subnet-yyyyyy"
associate_public_ip_address = false
vpc_security_group_ids = "sg-xxxxxxx"
key_name = "frankfurt-test-servers-common"
disable_api_termination = true
monitoring = true
credit_specification {
cpu_credits = "standard"
}

root_block_device {
volume_size = 30
}

tags = {

Name = "web-server"
}
}

In the HCL file, we are pointing to the AWS provider and providing the AWS credentials (Access Key
and Secret Key) which will be used to communicate with AWS and provision resources.

We have created a security group, elastic IP, and ec2 instance with the necessary configuration
options to obtain the desired state in the configuration itself. Additionally, the AMI used for the ec2
instance is also queried by the configuration itself by looking for the latest Ubuntu image. Its easily
understandable syntax pattern allows users to easily define their desired configurations using HCL
and execute them via Terraform. You can have an in-depth look at all the available options for the
AWS provider in the Terraform documentation.

Terraform summary
Terraform is a powerful IaC tool that aims to provide the best balance between user friendliness and
features. Its declarative and platform-agnostic nature allows this tool to be used in any supported
environment without being vendor-locked or having to learn new platform-specific tools. The
flexible workflow and configuration options of Terraform allow it to be run in local environments.

Furthermore, users have the flexibility to select the exact implementation suited for their needs to
manage Terraform Cloud solutions. All this has led Terraform to become one of the leading IaC
tools.

Related reading
BMC DevOps Blog
IT Infrastructure Automation: A Beginner’s Guide
Serverless vs Function-as-a-Service (FaaS): What’s The Difference?
GitOps Explained: Concepts, Benefits & Getting Started
The Complete DevOps Certifications Guide

https://www.terraform.io/language/providers/configuration
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/it-infrastructure-automation/
https://blogs.bmc.com/blogs/serverless-faas/
https://blogs.bmc.com/blogs/gitops-cloud-native-app-delivery/
https://blogs.bmc.com/blogs/devops-certifications/

