HOW TO COMPLETE A SUCCESSFUL COBOL VERSION 5.2 OR 6.1
ROLLOUT

After you've worked through our suggested steps for migrating your COBOL programs to COBOL
Version 5.2 or 6.1, it's time to begin an initial rollout. Here's how.

After you've migrated your COBOL programs to COBOL Version 5.2 or 6.1, it's time to begin an initial
rollout. As always, be sure to refer to the IBM Migration Guide. Following those guidelines will
generally make the migration go more smoothly.

Before you roll out your COBOL Version 5.2 or 6.1 programs, set up some comparative testing. Run
the data from the previous COBOL release you were using. Later, when you run your new programs,
you can compare them to the old programs. This will help you quantify the benefits of migrating to
the new release to business leaders. Every machine cycle saved allows other applications to use
those saved cycles for better performance.

Rolling Out Your Programs

Begin your initial COBOL Version 5.2 or 6.1 rollout with one business application and document the
migration process. This will serve as a template for subsequent rollouts. During and after the initial
rollout, seek feedback that will help you inform other business units on the success and
encountered issues of the rollout. Discovering issues early on will make it easier to correct them and
adjust your template for later rollouts.

After the initial COBOL Version 5.2 or 6.1 rollout, go back to that comparative testing we talked about


http://www-01.ibm.com/support/docview.wss?uid=swg27036733

for an early idea of potential savings. See what worked and prepare to move forward, but don't
begin rolling out everything.

Only convert those applications that can benefit from the new versions of COBOL. Start with your
highly arithmetic, floating-point or complex mathematical applications. These application types will
take advantage of the z architecture of COBOL Versions 5.2 and 6.1 and will benefit from higher
levels of optimization. If applications do not take advantage of the z architecture extensions, or
would not benefit from higher levels of optimization, you should leave them in their current versions
of COBOL.

As a side note, for sites with 24/7 CICS regions, replacing PDS with PDSE won't be easy. What you
can do is dynamically insert program objects ahead of your load libraries in the CICS RPL. This will
provide a way for you to take advantage of new COBOL Version 5.2 and 6.1 programs for CICS.

Continue this COBOL Version 5.2 or 6.1 rollout path, releasing programs that will benefit from the
new COBOL version you've decided to go with and testing those against their previous versions to
calculate savings.

Reviewing Your COBOL Migration Strategy

Before you roll out, it may be useful to go back and review the steps that you've taken. For your
convenience, here is a list of things to note, compiled from past blog posts on the subject:

1. Don't convert your COBOL programs to Java. This requires sacrificing efficiency for cost
saving, and the cost saving you generate will be short-lived and evolve into a series of
long-term pitfalls costing you more money.

1. The first step in a COBOL Version 5.2 or 6.1 migration strategy is roadmap planning. You
need to understand your current programs, consider some potentially problematic areas
you could happen upon when migrating them, understand your hardware machines, and
determine which version of COBOL you're going to migrate to (there's an explanation for
why you have a choice).

1. If you have a choice between COBOL versions, which is better? Starting at COBOL
Version 6.1 eliminates duplicate compiler upgrades twice, once to 5.2 and again to 6.1.
However, by migrating to COBOL Version 5.2 first, you can save costs by leveraging the
IBM Enterprise COBOL trials for both 5.2 and 6.1 to gain maximum experience and
application comfort before making a formal decision to upgrade.

1. A large percentage of these migration problems are data related, so thorough testing is
crucial to discovering them. The testing you do now will save you from countless hours of
debugging, potentially losing revenue and disappointing your customers.

1. There are several types of performance optimization available in COBOL Versions 5.2 and 6.1,


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.1.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_using_librarys.html

but you may need some guidance on how to identify and use these new COBOL optimization
features.

Digital business is driving more mainframe activity. Mainframe shops should optimize their programs
so they perform well against the modern demands they face from new and growing digital
engagement. The best way to optimize your COBOL programs is to migrate them to COBOL Version

5.2 or 6.1. Good luck along your journey.



