
STATE OF SERVERLESS TODAY

Adopting serverless computing relieved many DevOps teams from the responsibilities of
purchasing, provisioning, and managing backend servers, instead allowing their teams to focus on
code. For many developers, serverless architecture offered increased scalability, flexibility, and
faster time to release while reducing costs and operational overhead. These much-touted benefits
are the drivers behind the fast adoption of services like AWS Lambda, Microsoft Azure, and Google
Cloud Platform.

However, serverless computing is not a magic bullet for all web application developers. This
technology has only been widely available since AWS Lambda was introduced in 2014 as the first
public cloud infrastructure vendor with an abstract serverless computing offering. Even though in
tech years 6 seems like 60, serverless technology is young and comes with its own growing pains
like testing and debugging challenges, vendor lock-in risks, performance issues, and security
concerns. Since serverless has become a viable option all the way up to the enterprise level, CIOs
and DevOps teams have had to weigh these known risks against the benefits of no longer having to
manage servers, databases, queues, and even containers as well as the cost savings of the pay-as-
you-go economic model.

To better understand where industry leaders, SMEs, and performers see serverless taking us in the
future, we have pulled together some of the most interesting and insightful data, reports, and
opinions all in one place to keep you informed about one of the biggest topics in the tech world
today.



Industry Analysis
In a survey conducted by O’Reilly in June 2019, more than 1,500 respondents across various job
titles, industries, and the globe shared their thoughts and experiences on the impacts that serverless
architecture is having on their industries.

O’Reilly Key Findings
40% of respondents work at organizations that have adopted serverless architecture in some
form or another. Reduced operational costs and automatic scaling are the top serverless
benefits cited by this group.
Of the 60% of respondents whose companies haven’t adopted serverless, the leading concerns
about the paradigm are security and fear of the unknown.
About 50% of respondents who adopted serverless three-plus years ago consider their
implementations successful or extremely successful, a contrast to the 35% of those adopting
serverless a year or less ago experiencing a successful or extremely successful
implementation—a gap that suggests serverless experience pays off.
Respondents who have implemented serverless made custom tooling the top tool
choice—implying that vendors’ tools may not fully address what organizations need to deploy
and manage a serverless infrastructure.

The survey demonstrates there is still a lot of market share for serverless vendors to gain, but even
respondents who have not taken the plunge into serverless adoption were curious enough to
participate in the survey. Respondents also expressed hesitation to adopt because of significant
concerns including training/upskilling existing staff, vendor lock-in, and the difficulties of integration
and testing as well as security and managing this new type of infrastructure.

In an excellent state of the serverless address from June 2019, UC Berkley Grad Student Chenggang
Wu discusses both the benefits and shortcomings of existing serverless offerings including real
world examples. He then projects forward to the future and highlights challenges that must be
overcome to realize truly general-purpose serverless computing.

Key topics:
Capabilities and limitations of FaaS (Function-as-a-Service)
Performance penalties of FaaS
Poor consistency guarantees
Lack of inbound network connections
Stateful serverless computing
Logical disaggregation with physical co-location
Casual Consistency
The future of cloud programming
Moving forward from FaaS

Andrea Passwater of Serviceless Blog addresses a major drawback of serverless applications and
the incompatibility between vendor functions and programming languages. She describes a not too
distant multi-cloud future capable of cobbling together your favorite aspects from different
severless providers and customizing your own solution, therefore eliminating the common

https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.infoq.com/presentations/state-serverless-computing/
https://www.serverless.com/blog/state-of-serverless-multi-cloud


complaint of vendor lock-in risks.

In Andrea’s dreamscape, she suggests serverless multi-cloud could be made easier by
implementing three series of things:

cross-cloud service compatibility
shims for polyglot language support
smart data routing

Lastly, don’t miss the deserved compliment to Microsoft and Amazon for pushing out serverless
features over the past two years faster than a start-up.

While you are over there, Serverless Blog also did a survey of their own to find out more about how
their readers are adopting serverless architectures, what problems they're encountering, and how
they feel about the future of serverless.

Out of 137 responses, 50% stated that they are using serverless architectures for work, while 21% are
using them for a side project, and 22% have experimented with them but are not actually using them
on a project yet. As for specific uses of serverless architecture, web server/API comes in at 65%,
data processing came in at 34%, while internal tooling, IoT, and chatbots were all marked as use
cases by over 20% of respondents while 33% fall into unlisted categories but most commonly,
mobile backends.

It is no surprise that when asked which service provider respondents used, AWS Lambda came in far
ahead with 96% since it is the most mature service; however, newer players to the market are
constantly adding new functionalities and capabilities.

Vendor rankings:
AWS Lambda - 96%
Azure Functions - 6%
Google Cloud Functions - 4%
Webtask - 2%
OpenWhisk - 2%

Overall 61% of respondents gave high marks about their optimism in the future of serviceless.

In a very fresh report from February 2020, Datadog does some heavy lifting by examining the
serverless usage of thousands of companies to provide a look at how (and how much) serverless is
being used in the real world, specifically about AWS Lambda. Click over to the report itself if you are
a fan of easy to read graphs and charts you would expect from a name like Datadog.

Key findings:
Half of AWS users have adopted Lambda
Lambda is more prevalent in large environments
Container users have flocked to Lambda
Amazon SQS and DynamoDB pair well with Lambda
Node.js and Python dominate among Lambda users
The median Lambda function runs for 800 milliseconds
Half of Lambda functions have the minimum memory allocation

https://www.serverless.com/blog/state-of-serverless-community
https://www.datadoghq.com/state-of-serverless/


Two-thirds of defined timeouts are under 1 minute
Only 4 percent of functions have a defined concurrency limit

In New Relic’s Serverless Technology Semiannual Report, they have aggregated and analyzed a
sample set of data over time, calling out key trends about their AWS Lambda serverless users. The
report includes insightful data and every page includes opinion and insight from serverless industry
SMEs.

Key Insights:
Serverless adoption among enterprises continues to rise with a 206% increase in average
weekly invocations over the last 12 months. The enterprises using serverless in production are
expanding their serverless footprint with a 178% increase of functions per account.
In terms of function volume, developers mostly rely on Node.js and Python for building
serverless applications on Lambda, with Java as the third most-used runtime. However, with
the AWS launch of Provisioned Concurrency mitigating cold start impacts and VPC
improvements, making Lambda more attractive for enterprises that require isolated
environments, we expect the adoption trends for Java to increase in 2020.
The continued bias toward smaller function code size, due in large part to deployment
package size limits from AWS, supports the serverless best practice of creating functions to
perform a single, well-defined task with low overall code sizes.
Developers tend to prolong updates to the latest language version after deprecation
announcements from AWS. We saw a notable volume of functions still running Node.js. 6.10,
Python 2.7, and even older versions. These are likely unmaintained functions inflating error
rates and costs.

https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://blog.newrelic.com/product-news/new-relic-serverless-provisioned-concurrency-metrics/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html

