
SRE VS DEVOPS: WHAT’S THE DIFFERENCE?

With the growing complexity of application development, organizations are increasingly adopting
methodologies that enable reliable, scalable software.

DevOps and site reliability engineering (SRE) are two approaches that enhance the product release
cycle through enhanced collaboration, automation, and monitoring. Both approaches utilize
automation and collaboration to help teams build resilient and reliable software—but there are
fundamental differences in what these approaches offer and how they operate.

So, this article delves into the purpose of DevOps and SRE. We’ll look at both approaches, including
benefits, differences, and key elements.

(This article is part of our DevOps Guide. Use the right-hand menu to navigate.)

https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/devops-basics-introduction/


DevOps basics
DevOps is an overarching concept and culture aimed at ensuring the rapid release of stable, secure
software. DevOps exists at the intersection of Agile development and Enterprise Systems
Management (ESM) practices.

Early development methodologies involved development and operations teams working in silos,
which led to slower development and unstable deployment environments. To solve this, the
DevOps methodology integrates all stakeholders in the application into one efficient workflow which
enables the quick delivery of high quality software.

By allowing communication and collaboration between cross-functional teams, DevOps also
enables:

Reliable service delivery
Improved customer satisfaction

(Explore our multi-part DevOps Guide.)

DevOps practices & methods
DevOps practices are based on continuous, incremental improvements bolstered by automation.
While a full-fledged automation is rarely possible, for a comprehensive automation, a DevOps
methodology focuses on the following elements:

https://blogs.bmc.com/blogs/agile-vs-waterfall/
https://blogs.bmc.com/blogs/enterprise-service-management/
https://blogs.bmc.com/blogs/enterprise-service-management/
https://blogs.bmc.com/blogs/software-quality-metrics/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/automation-in-devops/


Continuous delivery & integration (CI/CD)
DevOps aims to deliver applications and updates to customers rapidly and frequently. By using
CI/CD pipelines to seamlessly connect processes and practices, DevOps automates updating and
releasing code into production.

CI/CD also involves continuous monitoring and deployment to ensure code consistency across
various software versions and deployment environments.

(Set up your own CI/CD pipeline.)

Infrastructure as code
DevOps emphasizes the abstraction of IT infrastructure so that it can be managed using software
engineering methods and provisioned automatically. This results in an efficient system that allows
your team to efficiently:

Track changes
Monitor infrastructure configurations
Roll back changes that have undesired/unintended effects

Automated testing
Code is automatically and continuously tested while it is being written or updated. By eliminating the
bottlenecks associated with pre-release testing, the continuous mechanism speeds up the
deployment.

DevOps works with…
Apart from the elements that help DevOps practices enable comprehensive automation, DevOps
also relies on various methods that inherently enable faster delivery, efficient automation, and
enhanced collaboration. Some methodologies that DevOps uses or otherwise pairs well with
include:

Scrum. This framework describes the composition and roles of teams collaborating to
accelerate quality assurance and code development. The scrum framework defines
designated roles in the project and key workflows within all phases of a software development
lifecycle (SDLC).
Kanban. A key workflow management mechanism that enables teams to define, manage, and
improve on services that deliver business value.
Agile. The Agile framework defines processes that improve software teams’ responsiveness to
changing market needs by enabling rapid, frequent, and iterative updates. Agile enables
shorter development cycles which allow for a clearer understanding of business and
development goals for improved customer satisfaction.

(Compare Scrum, Kanban & Agile.)

https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/infrastructure-as-code/
https://blogs.bmc.com/blogs/testing-automation/
https://blogs.bmc.com/blogs/scrum-vs-kanban/


Benefits of DevOps
DevOps reduces the complexity of managing software engineering projects through collaboration
and automation. Some benefits of adopting DevOps include:

Ensure quicker and frequent delivery of application features that improve customer
satisfaction
Create a balanced approach to managing an SDLC for enhanced productivity of software
teams
Innovate faster by automating repetitive tasks
Remediate problems quicker and more efficiently
Minimize production costs by cutting down errors in maintenance and infrastructure
management

Site reliability engineering (SRE) basics
SRE provides a unique approach to application lifecycle and service management by incorporating
various aspects of software development into IT operations.

SRE was first developed in 2003 to create IT infrastructure architecture that meets the needs of
enterprise-scale systems. With SRE, IT infrastructure is broken down into basic, abstract
components that can be provisioned with software development best practices. This enables teams
to use automation to solve most problems associated with managing applications in production.

SRE uses three Service Level Commitments to measure how well a system performs:

Service level agreements (SLAs) define the required reliability, performance, and latency of the
system as desired by end users.
Service level objectives (SLOs) target values and goals set by SRE teams that should be met to
satisfy SLAs.
Service level indicators (SLIs) measure specific metrics and aspects that show how much a
system conforms to the SLOs. Typical SLIs include request latency, system throughput, lead
time, development frequency, mean time to restore (MTTR), and availability error rate.

Key principles of SRE include:

https://blogs.bmc.com/blogs/software-project-management/
https://blogs.bmc.com/blogs/slas-vs-olas/
https://blogs.bmc.com/blogs/slo-service-level-objectives/
https://blogs.bmc.com/blogs/service-level-indicator-metrics/
https://blogs.bmc.com/blogs/mtbf-vs-mtff-vs-mttr-whats-difference/


(Learn more about SRE concepts.)

The Site Reliability Engineer role
SRE essentially creates a new role: the site reliability engineer. An SRE is tasked with ensuring
seamless collaboration between IT operations and development teams through the enhancement
and automation of routine processes. Some core responsibilities of an SRE include:

Developing, configuring, and deploying software to be used by operations teams
Handling support escalation issues
Conducting and reporting on incident reviews
Developing system documentation
Change management
Determining and validating new features and updates

SRE tools
SRE teams rely on the automation of routine processes using tools and techniques that standardize
operations across the software’s lifecycle. Some tools and technologies that support Site Reliability
Engineering include:

https://blogs.bmc.com/blogs/sre-site-reliability-engineering/


Containers package applications in a unified environment across multiple deployment
platforms, enabling cloud-native development.
Kubernetes is a popular container orchestrator that can effectively manage containerized
applications running on multiple environments.
Cloud platforms allow you to provision scalable, flexible, and reliable applications in highly
distributed environments. Popular platforms include Microsoft Azure, Amazon AWS, and
Google Cloud.
Project planning & management tools allow you to manage IT operations across distributed
teams. Some popular tools include JIRA and Pivotal Tracker.
Source control tools such as Subversion and GitHub erase boundaries between developers
and operators, allowing for seamless collaboration and release of application delivery. Source
control tools include Subversion and GitHub.

SRE vs DevOps
Both methodologies enforce minimal separation between Development and Operations teams. But
we can sum up the key difference as this: DevOps focuses more on a cultural and philosophical shift,
and SRE is more pragmatic and practical.

This highlights various differences in how the concepts operate, including:

Essence. SRE was developed with a narrow focus: to create a set of practices and metrics that
allow for improved collaboration and service delivery. DevOps, on the other hand, is the
collection of philosophies that enable the mindset of culture and collaboration between siloed
teams.
Goal. Both SRE and DevOps aim to bridge the gap between development and operations,
though SRE involves prescriptive ways of achieving reliability, while DevOps works as a
template that guides collaboration.
Focus. Site reliability engineering mainly focuses on enhancing system availability and
reliability while DevOps focuses on speed of development and delivery while enforcing
continuity.
Team structure. An SRE team is composed of site reliability engineers who have a background
in both operations and development. DevOps teams include a variety of roles, including QA
experts, developers, engineers, SREs and many others.

(Explore DevOps team structure.)

How SRE supports DevOps principles & philosophies
SRE and DevOps are not competing methodologies. That’s because SRE provides a practical
approach to solving most DevOps concerns.

In this section, let’s explore how teams use SRE to implement the principles and philosophies of
DevOps:

Reducing organizational silos
DevOps works to ensure that different departments/software teams are not isolated from each
other, ensuring they all work towards a common goal.

https://blogs.bmc.com/blogs/cloud-native-devops/
https://blogs.bmc.com/blogs/system-reliability-availability-calculations/
https://blogs.bmc.com/blogs/system-reliability-availability-calculations/
https://blogs.bmc.com/blogs/devops-team-structure/


SRE enables this by enforcing the ownership of projects between teams. With SRE, every team uses
the same tools, techniques, and codebase to support:

Uniformity
Seamless collaboration

Implementing gradual change
DevOps embraces slow, gradual change to enable constant improvements. SRE supports this by
allowing teams to perform small, frequent updates that reduce the impact of changes on application
availability and stability.

Additionally, SRE teams use CI/CD tools to perform change management and continuous testing to
ensure the successful deployment of code alterations.

Accepting failure as normal
Both SRE and DevOps concepts treat errors and failure as an inevitable occurrence. While DevOps
aims to handle runtime errors and allow teams to learn from them, SRE enforces error management
through Service Level Commitments (SLx) to ensure all failures are handled.

SRE also allows for a risk budget that allows teams to test the limits of failure for reevaluation and
innovation.

Leveraging tools & automation
Both DevOps and SRE use automation to improve workflows and service delivery. SRE enables
teams to use the same tools and services through flexible application programming interfaces (APIs).
While DevOps promotes the adoption of automation tools, SRE ensures every team member can
access the updated automation tools and technologies.

Measure everything
Since both DevOps and SRE support automation, you’ll need to continuously monitor the developed
systems to ensure every process runs as planned.

DevOps gathers metrics through a feedback loop. On the other hand, SRE enforces measurement
by providing SLIs, SLOs, and SLAs to perform measurements. Since Ops are software-defined, SRE
monitors toil and reliability, ensuring consistent service delivery.

Summing up DevOps & SRE
SRE and DevOps are often referred as two sides of the same coin, with SRE tooling and techniques
complementing DevOps philosophies and practices. SRE involves the application of software
engineering principles to automate and enhance ITOps functions such as:

Disaster response
Capacity planning
Monitoring

https://blogs.bmc.com/blogs/error-budgets/
https://blogs.bmc.com/blogs/devops-feedback-loops/


On the other hand, a DevOps model enables the rapid delivery of software products through
collaboration between development and operations teams.

Over the years, out of all organizations that already have taken advantage of DevOps, 50% of
companies have already adopted SRE for enhanced reliability. One reason for this is that SRE
principles enable enhanced observability and control of dynamic applications that rely on
automation.

At the end, the goal of both the methodologies is to enhance the end-to end cycle of an IT
ecosystem—the application lifecycle through DevOps and operations lifecycle management
through SRE.

"Gain insight to the capabilities necessary to attract top SRE talent and make them successful in your
organization with artificial intelligence for operations (AIOps) and artificial intelligence for service
management (AISM) capabilities."

Related reading
BMC DevOps Blog
The Complete DevOps Certifications Guide
The State of DevOps: A Report Roundup
SRE vs ITOps: Are SRE & IT Operations The Same Thing?
The State of SRE Today
Implementing GitOps To Deliver Cloud NativeApplications

https://www.blameless.com/blog/top-predictions-for-sre-2021
https://www.blameless.com/blog/top-predictions-for-sre-2021
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/devops-certifications/
https://blogs.bmc.com/blogs/state-of-devops/
https://blogs.bmc.com/blogs/sre-vs-itops/
https://blogs.bmc.com/blogs/state-of-sre/
https://blogs.bmc.com/blogs/gitops-cloud-native-app-delivery/

