
THE IMPORTANCE OF SOLID DESIGN PRINCIPLES

SOLID is a popular set of design principles that are used in object-oriented software development.
SOLID is an acronym that stands for five key design principles: single responsibility principle, open-
closed principle, Liskov substitution principle, interface segregation principle, and dependency
inversion principle. All five are commonly used by software engineers and provide some important
benefits for developers.

The SOLID principles were developed by Robert C. Martin in a 2000 essay, “Design Principles and
Design Patterns,” although the acronym was coined later by Michael Feathers. In his essay, Martin
acknowledged that successful software will change and develop. As it changes, it becomes
increasingly complex. Without good design principles, Martin warns that software becomes rigid,
fragile, immobile, and viscous. The SOLID principles were developed to combat these problematic
design patterns.

The broad goal of the SOLID principles is to reduce dependencies so that engineers change one
area of software without impacting others. Additionally, they’re intended to make designs easier to
understand, maintain, and extend. Ultimately, using these design principles makes it easier for
software engineers to avoid issues and to build adaptive, effective, and agile software.

While the principles come with many benefits, following the principles generally leads to writing
longer and more complex code. This means that it can extend the design process and make
development a little more difficult. However, this extra time and effort is well worth it because it
makes software so much easier to maintain, test, and extend.

https://web.archive.org/web/20150906155800/http:/www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http:/www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf


Following these principles is not a cure-all and won’t avoid design issues. That said, the principles
have become popular because when followed correctly, they lead to better code for readability,
maintainability, design patterns, and testability. In the current environment, all developers should
know and utilize these principles.

Interested in Enterprise DevOps? Learn more about DevOps Solutions and Tools with BMC. ›

Single Responsibility Principle
Robert Martin summarizes this principle well by mandating that, “a class should have one, and only
one, reason to change.” Following this principle means that each class only does one thing and
every class or module only has responsibility for one part of the software’s functionality. More
simply, each class should solve only one problem.

Single responsibility principle is a relatively basic principle that most developers are already utilizing
to build code. It can be applied to classes, software components, and microservices.

Utilizing this principle makes code easier to test and maintain, it makes software easier to
implement, and it helps to avoid unanticipated side-effects of future changes.

To ensure that you’re following this principle in development, consider using an automated check
on build to limit the scope of classes. This check is not a foolproof way to make sure that you’re
following single responsibility principle, but it can be a good way to make sure that classes are not
violating this principle.

Open-Closed Principle
The idea of open-closed principle is that existing, well-tested classes will need to be modified when
something needs to be added. Yet, changing classes can lead to problems or bugs. Instead of
changing the class, you simply want to extend it. With that goal in mind, Martin summarizes this
principle, “You should be able to extend a class’s behavior without modifying it.”

Following this principle is essential for writing code that is easy to maintain and revise. Your class
complies with this principle if it is:

Open for extension, meaning that the class’s behavior can be extended; and1.
Closed for modification, meaning that the source code is set and cannot be changed.2.

At first glance, these two criteria seem to be inherently contradictory, but when you become more
comfortable with it, you’ll see that it’s not as complicated as it seems. The way to comply with these
principles and to make sure that your class is easily extendable without having to modify the code is
through the use of abstractions. Using inheritance or interfaces that allow polymorphic substitutions
is a common way to comply with this principle. Regardless of the method used, it’s important to
follow this principle in order to write code that is maintainable and revisable.

https://blogs.bmc.com/it-solutions/devops.html


Take IT Service Management to the next level with BMC Helix ITSM.›

Liskov Substitution Principle
Of the five SOLID principles, the Liskov Substitution Principle is perhaps the most difficult one to
understand. Broadly, this principle simply requires that every derived class should be substitutable
for its parent class. The principle is named for Barbara Liskov, who introduced this concept of
behavioral subtyping in 1987. Liskov herself explains the principle by saying:

What is wanted here is something like the following substitution property: if for each object O1 of
type S there is an object O2 of type T such that for all programs P defined in terms of T, the behavior
of P is unchanged when O1 is substituted for O2 then S is a subtype of T.

While this can be a difficult principle to internalize, in a lot of ways it’s simply an extension of open-
closed principle, as it’s a way of ensuring that derived classes extend the base class without
changing behavior.

Following this principle helps to avoid unexpected consequences of changes and avoids having to
open a closed class in order to make changes. It leads to easy extensions of software, and, while it
might slow down the development process, following this principle during development can avoid
lots of issues during updates and extensions.

Interface Segregation Principle
The general idea of interface segregation principle is that it’s better to have a lot of smaller
interfaces than a few bigger ones. Martin explains this principle by advising, “Make fine grained
interfaces that are client-specific. Clients should not be forced to implement interfaces they do not
use.”

For software engineers, this means that you don’t want to just start with an existing interface and
add new methods. Instead, start by building a new interface and then let your class implement
multiple interfaces as needed. Smaller interfaces mean that developers should have a preference
for composition over inheritance and for decoupling over coupling. According to this principle,
engineers should work to have many client-specific interfaces, avoiding the temptation of having
one big, general-purpose interface.

Dependency Inversion Principle
This principle offers a way to decouple software modules. Simply put, dependency inversion
principle means that developers should “depend on abstractions, not on concretions.” Martin further
explains this principle by asserting that, “high level modules should not depend upon low level
modules. Both should depend on abstractions.” Further, “abstractions should not depend on details.
Details should depend upon abstractions.”

One popular way to comply with this principle is through the use of a dependency inversion pattern,
although this method is not the only way to do so. Whatever method you choose to utilize, finding a
way to utilize this principle will make your code more flexible, agile, and reusable.

https://blogs.bmc.com/it-solutions/bmc-helix-itsm.html


Conclusion
Implementing SOLID design principles during development will lead to systems that are more
maintainable, scalable, testable, and reusable. In the current environment, these principles are used
globally by engineers. As a result, to create good code and to use design principles that are
competitive while meeting industry standards, it’s essential to utilize these principles.

While implementing these principles can feel overwhelming at first, regularly working with them and
understanding the differences between code that complies with the principles and code that does
not will help to make good design processes easier and more efficient.

https://medium.com/mindorks/solid-principles-explained-with-examples-79d1ce114ace
https://medium.com/mindorks/solid-principles-explained-with-examples-79d1ce114ace

