
SRS: SOFTWARE REQUIREMENT SPECIFICATIONS BASICS

Software Requirements Specifications, also known as SRS, is the term used to describe an in-depth
description of a software product to be developed. It’s considered one of the initial stages of the
software development lifecycle (SDLC). Think of it like the map that points you to your finished
product.

The internet provides many great examples of SRS for developers who are open to learning. The
caveat is that, like a map, SRS has to be followed exactly in order for you to arrive at the right
destination. To write clear, concise, and easy to follow SRS, you must understand your project. But
you must also understand SRS guidelines.

How do you know when your SRS is ready for development? What makes it exceptional? That’s
what we are going to cover in this article.

https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/


Characteristics of exceptional SRS
There are certain things developers should strive to achieve in their SRS document to make it
primed for a smooth development project. These can be broken up into three categories:

Meaningful qualities
Characteristics that meet goals
Identifiable requirement smells

Let's take a look.

Meaningful Qualities
The meaningful qualities of SRS are those that are purposeful in helping the developer understand
the full scope of the project.

Breaks Down the Problem. A good SRS will break down the problem into chunks that can be
solved more readily. This also helps to increase understanding of issues and makes them
easier to tackle.
Offers Design Input. Your SRS should contain design details to assist with implementation and
deployment.
Considers Components for Feedback. A meaningful quality to users of the finished software is



the opportunity to provide feedback. This should be a consideration when developing a strong
SRS.
Includes Validation Strategies. Validation strategies should be implemented to ensure
requirements are stated correctly and function the way they are intended to.
Requirements are Ranked by Importance. Ranking the requirements by importance clearly
tells both developers and stakeholders where the priorities lie. If the project is coming up on a
specific deadline, like the end of a sprint, having a ranking system helps developers shift
priorities easily.
Complete, Concise, and Modifiable. The finished product should offer a total picture of the
development project as concisely as possible to promote understanding. It should be easily
modifiable to account for feedback and changes.

Characteristics that Meet Goals
Each development project should have a pre-established set of goals. These characteristics are
used to ensure goals are met and the project stays on the right track.

Descriptive Scope of Work. Having a clear scope of work is one of the most important goals.
The scope guides developers through the project. It creates an understanding of what the
finished project should be by defining how to get there.
Defines Features for the End User. Customer requirements include certain features for the
end user that have to be defined in the SRS.
Provides Opportunity for Review with Stakeholders. One purpose of this document is to have
transparency between project managers and stakeholders. That’s why reviews of the SRS
between both parties are an important benchmark to overall success.
Clear Navigation. A clear, concise document structure with navigation is an important
reference point for developers.
Testing & Refining. A goal of any development project is to have a framework for testing. An
additional consideration is how you will refine the framework once it’s been deployed. The SRS
should address both.
Estimates Costs. Importantly, the SRS should be able to estimate costs of development and
deployment, as well as operational costs.

Identifiable Requirement Smells
Similar to code smells, requirements smells are indicators that a requirement could be problematic.
Developers should pay attention to these characteristics and make changes as necessary.

Resolving them is handled on a case-by-case basis since they don’t typically lead to fatal errors in
the requirement artifact. That’s why they are included among characteristics of exceptional SRS.
Developing a fine-tuned nose for these smells will make your work better.

Examples of requirement smells include:

Ambiguous Adverbs and Adjectives
Subjective Language
Superlatives
Negative Statements

http://www.gartner.com/it-glossary/rdm-requirements-definition-and-management
http://www.pwc.com/us/en/financial-services/publications/viewpoints/software-failure-automated-functional-testing.html
https://www.bmc.com/blogs/technical-debt-explained-the-complete-guide-to-understanding-and-dealing-with-technical-debt/


Guidelines for an Exceptional SRS
The content in a SRS can vary from project to project. Even so, each project, no matter how different,
should follow a prescribed set of guidelines. These guidelines are easy to remember, since their
acronym spells the word FACTS.

Functional Requirements. The function of the SRS is separate from that of the development
project itself. The functional requirements of this document to provide a framework for
implementation should be obvious throughout the document.
Analysis Model. The analysis model allows you to drill down into the specification of certain
requirements. An example is if the requirement is “Add Product to Cart,” a command that
doesn’t account for other details like size and quantity. These can be fleshed out with the
Analysis Model since it connects functional requirements with the design.
Cognitive Model. This is the model of development that helps developers understand how a
system is going to be perceived by others, typically end users.
The Content & Structure of the Specification. This is also known as a data dictionary. It should
include all the data surrounding each entity in addition to organizational flow charts.
Specification. Guidelines for the specification itself must be robust enough to tell a story of the
development project, and flexible enough to allow changes in scope and scale.

The Structure of Exceptional SRS
There’s no one way to structure your SRS, although there are several models to serve as examples.
If you’ve followed the characteristics and guidelines thus far, you’re off to a good start.

When it comes to putting the document together, your framework might look something like this:

Purpose/Introduction
Definitions
System overview
References

Overall description
Product perspective

System Interfaces
User Interfaces
Hardware Interfaces
Software Interfaces
Communication Interfaces
Memory Constraints

Design constraints
Operations
Site Adaptation Requirements

Product functions
User characteristics
Constraints, assumptions and dependencies



Specific requirements
External interface requirements
Functional requirements
Performance requirements
Logical database requirement
Software System attributes

Reliability
Availability
Security
Maintainability
Portability

Organizing Specific Requirements

The above example is adapted from IEEE Guide to Software Requirements Specifications (Std
830-1993). The IEEE is an organization that sets the industry standards for SRS requirements. It is the
most widely used set of standards when creating an SRS and can be adapted to the needs of each
agency.

Defining the Structure
A few key components of the above example are as follows:

Purpose/Introduction
The purpose section should summarize the entire SRS document. It’s similar to the executive
summary of business documents, and it sets the tone for the project. Typically, key components of
this section include definitions, systems overview, and references. These help to establish important
themes in the development project.

Overall Description
The overall description gives an overview of the requirements and other subsections. The
requirements will be described in greater detail in the specific requirements section. The function of
the overall description is to consider determining factors that impact the requirements.

Subsections of the overall description are product perspective, design constraints, product
functions, user characteristics and constraints, assumptions, and dependencies. These all have to do
with anticipating the needs and challenges that stand in the way of completing the requirements.
Design constraints, for example, includes everything from consideration of software compliance to
hardware constraints.

Specific Requirements
The purpose of the specific requirements section is to detail all the requirements necessary for
development. This section provides a framework for designers to create the product in accordance
with requirements.

The specific requirements section is where you’ll find external interface requirements, functional

http://ieeexplore.ieee.org/document/278253/?reload=true


requirements, performance requirements, logical database requirements, and software system
attributes. Each of these subsections details a set of requirements necessary for the overall
functioning of the program.

Creating an Exceptional SRS
Now you know how to create an exceptional SRS document. A quick search will reveal a number of
templates you can apply this new knowledge to if you still aren’t 100% confident in your newly
learned ability.

It’s important to get it right the first time because the SRS is the basis for your entire development
project. Ultimately, remember the goal of this document is to assist in a smooth implementation of
program development rather than having perfect SRS. Among the major components we discussed,
your SRS should be flexible, modifiable, and scalable so that it can change with the demands of the
project.

If this seems like a lot of information to take in at once, that’s because it is. This article provides a
high-level summary of a complex practice. The best way to approach your SRS research is similar to
how you should want to frame all of your development projects to stakeholders—in easy to
understand pieces of information.

Take it in chunks as you move through each section of the document. When it comes to your next
development project, you’ll be thanking yourself for taking the time to learn more. As with all things,
practice will make your SRS stronger. But these guidelines, characteristics, and structure
recommendations are a good start.

Additional Resources
BMC DevOps Blog
Deployment Pipelines (CI/CD) in Software Engineering
What Is Extreme Programming?
Python vs Go: What's The Difference?
Wardley Value Chain Mapping: What Is It & How To Create Yours

 

https://gephi.org/users/gephi_srs_document.pdf
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/deployment-pipeline/
https://blogs.bmc.com/blogs/extreme-programming/
https://blogs.bmc.com/blogs/go-vs-python/
https://blogs.bmc.com/blogs/wardley-value-chain-mapping/

