TOP 5 BEST PRACTICES FOR SOFTWARE DEVELOPMENT

p 1100
o 3220018 L
1:;:'{-1 aip1o1edl oL
300001 1110001

010l
pappanie 1301 101
EL_‘.-I Jrrluiil ulﬂlﬂlﬂlﬂ

1Eon01100110101

p1000001 11 1101010010

[a1po1010 10161 10 10 1020100

Breaking down all of software development to simple best practices isn't easy—or even all that
possible. The way one engineer approaches work is completely different from the next.

But certain practices and guidelines unite developers and product managers. With these guidelines
put in place, software development becomes a smoother process for all!

Here are five best practices in the world of software development. If you keep it simple, commit
regularly, and thoroughly test your work, you will have a better time building your code and
delivering quality software efficiently and on schedule.

Let's take a look.

Keep it simple

There's a temptation to make code that is overly complicated to read, full of strings which you might
need in the future, or just a general mess. Writing complex and esoteric code might have been
fashionable 30 years ago—showing off all your sophisticated skills—but now code needs to be clear
and efficient.

Since Max Kanat-Alexander, software developer for Google, said we should reduce complexity to
simplicity, there has been a cultural shift to creating streamlined code. If you ever doubt the quality
of your code, remember these two principles:

* DRY


https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/
https://blogs.bmc.com/blogs/product-manager/
https://blogs.bmc.com/blogs/software-quality-metrics/
https://www.codesimplicity.com/post/whats-wrong-with-computers/
https://www.codesimplicity.com/post/whats-wrong-with-computers/

* YAGNI

DRY: Don’t repeat yourself

Don't Repeat Yourself. Computers are smart. They're not like humans who constantly need to be
told something in order to remember it. Tell your computer once and it will know it until you tell it to
forget it.

Don't repeat yourself for the sake of repeating yourself
(Source)

That's why duplication is waste. Whether that's waste lines in code or wasted time in the process,
repeating yourself is just wasting time and putting greater strain on the code, your budget, and you.
The DRY principle might not apply in every single instance, but it's a great guideline.

In sum: Avoid repetition—instead, look at abstraction, automation, and intelligent implementation of
code.

YAGNI: You are not gonna need it

T SAD—
CAN YoU s T KNOW! TM DEVELOPING
THE SALT™ A SYSTEM TO PASS YOU

ARBITRARY CONDIMENTS.
R\ — Kk; 11 \ 11

ITS BEEN 20
MINUTES!
Just because it might save time in the future doesn't mean you need to
make it now (Source)

_) ITLL SAVE TME
IN THE LONG RUN!

N
-

[

You Are Not Gonna Need It. Would you build a bridge over a small stream in case it becomes a
crashing white water river? Probably not, right? Because that's unnecessary, even if it might save
headaches later down the line.

If you don't need a piece of code now, don't include it. Always focus on the task at hand and don't try
to second guess what the future will bring. You're a programmer, not a mystic. Even if you were
correct in guessing where the project would eventually lead you, there's a possibility that you'll find


https://deviq.com/principles/dont-repeat-yourself
https://blogs.bmc.com/?attachment_id=49660
https://medium.com/code-thoughts/dont-repeat-yourself-caa413910753
https://blogs.bmc.com/blogs/abstraction-layers/
https://blogs.bmc.com/blogs/automation-in-devops/
https://xkcd.com/974/
https://deviq.com/principles/yagni

it isn't exactly how you planned it.

Besides, adding code that isn't immediately important wastes time and resources that you probably
can better spend elsewhere.

Have a backout plan

Experimenting and changing things as you go is an easy way to cut down on revision time later. But
it is also a surefire way to take your code far in the wrong direction, with no easy way back.

Instead, commit your work often and regularly. This way you'll always be able to rewind to a point
where you hadn't got lost in the weeds.

This is a habit, one that is very much something you don't really appreciate the value of until it's too
late. If you don't keep committing, you could be adding days or weeks to your projects as you try to
find the error, correct it, and then start again on a different path. Even there, there's no guarantee
that the new path will be the right one—that's the perfect moment to make a commit, anyway!

(Learn how to set up a Cl/CD pipeline.)

Test, test, and test again

Big software companies don't wait until all of their code is in place before they put it through
rigorous testing—neither should you. Continuous testing over the long-term will give you a better
understanding of:

e The code you've already created
* \Xhat you still have to do

Few things are more difficult than looking at what you've written and trying to pinpoint the single
error that is causing a nasty bug in your system. Even if you are prone to three-day, coffee-fueled
writing sessions, you need to build testing into your workflow.

Get started with continuous testing by:

* Understanding the key concepts in DevOps testing.

e Considering shift left testing, which helps find and prevent detects early in the software
development lifecycle.

e Automating testing at regular intervals throughout the process will help you get much needed
feedback on your possibly buggy code. Let bots point out your mistakes and then you can
focus on correcting them and moving your project forward.

» Exploring the growing world of testing as a service (TaaS). If automated or large-scale testing
isn't possible, TaaS is particularly useful for small companies or teams with too much on their
plates.



https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://blogs.bmc.com/blogs/devops-continuous-testing/
https://blogs.bmc.com/blogs/devops-testing/
https://blogs.bmc.com/blogs/what-is-shift-left-shift-left-testing-explained/
https://blogs.bmc.com/blogs/testing-automation/
https://blogs.bmc.com/blogs/taas-testing-as-a-service/

Leverage test automation
smartly

Identify test automation
engineers
DevOps
Testing Best
Practices

Select the right testing tools

Track performance with
metrics

Maintain proper
documentation

Understand how to estimate

When you are managing a software project, whether as a part of a development team or as a
freelancer, you need to have realistic goals about your time requirements and budgeting. Making

quality code isn't just writing the code—it's taking the time to write it well and revise it to be even
better.

If you are rushed into finishing jobs, you will write less-than-standard code. Unrealistic time
constraints do no one any favours and they lead to compounding technical debt.

Make agreements that allow you the time to develop properly. Both you and your client will be
happier as a result.


https://blogs.bmc.com/blogs/software-project-management/
https://blogs.bmc.com/blogs/technical-debt-explained-the-complete-guide-to-understanding-and-dealing-with-technical-debt/

= bmc

: The
Developing a Releasing code
that's good enough

for delivery

perfectly designed technical

app, software, or debt

svystem
A balance

Make it rugged

Remember our first best practice: Simplicity is king in software development. But you don't want
your software to be so simple that it breaks. There needs to be an element of ruggedness to the
code you write. We want it to be both:

e Difficult to misuse
¢ Kind to human errors

If your software is unforgiving in these ways, it will be much more difficult for end users to
implement properly.

Creating code that is user friendly and unlikely to break (or be misused and confusing) is key for
successful rollouts. After all, if users can't figure out how to use it, where's the value?

The importance of best practices

Bringing in best practices will help you make the most of your development process without
reinventing the wheel. Make your code simple to read, simple to implement, and simple to use.

Every business needs best practices in order to ensure efficiency of time and money, and this is
certainly true of developing software products.

Related reading

e BMC DevOps Blog

Managing Containers & Code for DevOps, part of our DevOps Guide
Deploying vs Releasing Software: What's The Difference?

DevOps Engineer Roles & Responsibilities

How & Why To Become a Software Factory

Python vs Go: What's The Difference?

Top DevOps Conferences To Attend



https://blogs.bmc.com/blogs/it-best-practices/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/devops-managing-code-containers/
https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/devops-engineer-roles-and-responsibilities/
https://blogs.bmc.com/blogs/software-factory/
https://blogs.bmc.com/blogs/go-vs-python/
https://blogs.bmc.com/blogs/devops-conferences/

