
USER DEFINED FUNCTIONS (UDFS) IN SNOWFLAKE

In this tutorial, we show you how to create user defined functions (UDF) in Snowflake.

In Snowflake, you can create:

Functions in SQL and JavaScript languages
Functions that return a single value (scalar)
Functions that return multiple values (table)

(This article is part of our Snowflake Guide. Use the right-hand menu to navigate.)

Create data
If you want to follow the tutorials below, use the instructions from this tutorial on statistical functions
to load some data into Snowflake. The data is 41 days of hourly weather data from Paphos, Cyprus.

Snowflake UDF SQL function
We start with a SQL example.

The code below takes the input weather conditions, described in the table column main, and
converts that to an integer. This solves a common problem with machine learning: converting
categorical data to an integer.

Notice that the function has parameters (dt varchar(20)) and a return value (int). The rest of it is just
a SQL select statement.

https://blogs.bmc.com/blogs/sql-vs-nosql/
https://blogs.bmc.com/blogs/import-data-s3-snowflake/
https://blogs.bmc.com/blogs/snowflake-analytics-statistical-functions/
https://blogs.bmc.com/blogs/machine-learning-vs-predictive-analytics/

The code below uses the iff() and regex() statement to see whether the word rain, cloud, etc., is
found in the main column. It works by adding the numbers from 1 to 9. Since only one of these if
statements will be true, then the sum will be one of the values 1 to 9, thus giving the weather
conditions.

create or replace function weathercategorical (dt varchar(20))
 returns int
 as $$select (iff(main regexp '.*Clear.*',1,0) +
 iff(main regexp '.*Clouds.*',2,0) +
 iff(main regexp '.*Rain.*',3,0) +
 iff(main regexp '.*Thunderstorm.*', 4,0) +
 iff(main regexp '.*Mist.*', 5, 0) +
 iff(main regexp '.*Fog.*', 6, 0) +
 iff(main regexp '.*Squall.*',7,0) +
 iff(main regexp '.*Tornado.*', 8, 0) +
 iff(main regexp '.*Haze.*', 9, 0))
 from weather as w where w.dt = dt$$

The date and time is in epoch time format. The SQL statement below calls the function
weathercategorical for the date January 1, 2000, returning the scalar value 1, meaning clear
weather.

sselect weathercategorical (946684800) from weather where dt = 946684800

Snowflake table function
Here we show how to return more than one value, which Snowflake calls a table.

Create these two tables:

CREATE TABLE customers
 (
 customernumber varchar(100) PRIMARY KEY,
 customername varchar(50),
 phonenumber varchar(50),
 postalcode varchar(50),
 locale varchar(10),
 datecreated date,
 email varchar(50)
);

CREATE TABLE orders
 (
 customernumber varchar(100) ,
 ordernumber varchar(100) PRIMARY KEY,
 comments varchar(200),
 orderdate date,

 ordertype varchar(10),
 shipdate date,
discount float,
quantity int,
 productnumber varchar(50)
);

Then copy and paste this data.

Scalar vs table function
Now we create a function to look up the customer name and email given a record from the order
table. Orders don't contain customer information, so it's like doing a join. But since it's a function, it's
far less wordy and more convenient than creating a join every time you need customer information
with the order.

create or replace function getcustomer (customernumber number)
returns table (customername varchar, email varchar)
as 'select customername, email from customers
 where customers.customernumber = customernumber';

Given the customer number from the orders table, this statement gets:

The customer's name
Order number
Email

select getcustomer (948), ordernumber from orders where customernumber =
948;

JavaScript UDFs
You can use JavaScript in a user defined function. Just put language javascript.

Let's calculate n factorial (n!) since Snowflake does not have that math function. n factorial n! is n *
(n-1) * (n-2) * .. ** (n - (n + 1))). For example: 3!=3*2*1=6.

Notice below that we use variant as data type since JavaScript does not have integer types.

CREATE OR REPLACE FUNCTION factorial(n variant)
 RETURNS variant
 LANGUAGE JAVASCRIPT
 AS '
 var f=n;
 for (i=n-1; i>0; i--) {
 f=f*i
 }
 return f';

Run it and it calculates the value 6.

https://raw.githubusercontent.com/werowe/glue/master/customersOrders.sql
https://blogs.bmc.com/blogs/snowflake-sql-aggregate-functions/

select factorial(3)

Note that 33 is the largest number that function can handle. 33! =
8683317618811886495518194401280000000

Additional resources
For more tutorials like this, explore these resources:

BMC Machine Learning & Big Data Blog
How To Import Amazon S3 Data to Snowflake
Snowflake Window Functions: Partition By and Order By
Snowflake Lag Function and Moving Averages
Amazon Braket Quantum Computing: How To Get Started

https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/import-data-s3-snowflake/
https://blogs.bmc.com/blogs/snowflake-windows-functions-partition-by-order-by/
https://blogs.bmc.com/blogs/snowflake-lag-function/
https://blogs.bmc.com/blogs/aws-braket-quantum-computing/

