
THE BENEFITS OF SHIFT-LEFT PERFORMANCE TESTING

Performance issues discovered in production can lead to larger issues down the road, where
resolution can be expensive and time-consuming. They can also negatively impact customer
satisfaction due to slow-responding requests. The good news is that a shift left to involve
development teams in performance testing can help alleviate these issues.

Imagine this scenario: A production issue has occurred that has direct impact on customer response
time. The issue needs to be addressed by development. This is a very time-consuming and high-
cost activity that impacts current development activities and in turn slows innovation.

Could this performance issue be prevented? A staggering 86 percent of participants in a recent
webinar stated that they were aware of performance issues that came back to get resolved by
development. Why does this continue to happen? Can shift-left testing relieve these scenarios?

Monitoring Performance
Performance deals with resource use and availability. Failure to take performance into account
when introducing code changes invites the risk of inefficient processing, which can lead to lower
quality, increased costs, slower innovation, and unhappy customers. Performance issues can lead to
dissatisfied customers who may decide to take their business somewhere else—and once you’ve
lost a customer, it is very difficult to get them back. And don't forget that the time spent resolving
these issues in production, rather than earlier in the software delivery lifecycle (SDLC), decreases
time developers could be innovating, giving your competitors a frustrating advantage. Shift-left

https://blogs.bmc.com/blogs/what-is-shift-left-shift-left-testing-explained/
https://soundcloud.com/modernmainframe/shift-left-testing-on-the-mainframe-need-for-speed


testing helps avoid these issues by pushing more testing activities to development, thus decreasing
the chance of performance issues getting deployed into production.

Collaboration with Operations
Most developers have little insight into what happens to code once it is deployed. To maximize the
effectiveness of performance tests and ensure that testing is producing useful data, developers
should be empowered with the knowledge of how their code interacts with assets already in
production.

Performance analysts should share experiences with developers so they can become acutely aware
of what the applications do, and operations teams should explain batch jobs that compete for
resources for online transactions. For example, in order to avoid increases in cost dictated by service
level agreements (SLAs), a set of long-running jobs that approach the batch window limit could be
identified and performance tested after code changes. Candidates may include batch jobs with high

CPU, high I/O, high usage count of IBM® CICS® transaction, or high usage of IBM® Db2® SQL.

Once you’ve determined the candidates for performance testing, a downsized version of the test
should be prepared. You certainly don’t want to be executing full-blown performance tests on a
database with 20 billion rows, as this would be expensive and limit-excessive. You need a
downsized version that is small enough to run in a short timeframe but still able to catch resource
changes from run to run. Additionally, a baseline should be established against which you can
compare metrics such as CPU time, MSU, wait time, average service time, etc. to spot performance
issues.

Automation
Shift left and automation go hand in hand. By automating the execution of tests, you now have a
process in place to watch for performance issues introduced by code changes and address them
while the developer is still familiar with these changes. This will increase the quality and efficiency of
the changes and prevent resource-draining code from being promoted into production.

Note that it is not just code changes that can affect performance. There are system changes that
could affect results. Whenever system software or hardware changes are made, the performance
test suite should be executed. I have seen significant positive changes just from hardware upgrades.
Be sure to establish a new baseline for your performance tests after any such change.

For example, BMC AMI Strobe now supports performance testing of 64-bit applications, enabling
teams to estimate potential improvements in performance before transitioning programs to 64-bit.
Performance in production can then be tested to verify that the expected improvements have been
realized.

In summary, a shift left of performance tests combined with automation will result in the following
benefits:

Higher velocity
Higher quality
Happy customers
Faster innovation
Reduced costs

https://blogs.bmc.com/it-solutions/bmc-compuware-strobe.html
https://blogs.bmc.com/it-solutions/bmc-ami-strobe.html


Automating performance testing and shifting left allow you to pinpoint inefficiencies earlier in the
process and reduce the time spent on identifying and correcting issues that would otherwise be
found later in the SDLC. With better results produced more quickly, you'll save money, pave the way
for your next great innovation, and most importantly, satisfy your customers.


