
SERVERLESS BEST PRACTICES

The oldest deployment framework around today for serverless applications is known as the
Serverless Framework. This deployment framework has its own set of best practices for securing
your serverless deployment.

This article will review the Serverless Framework and outline the best practices for developing and
deploying serverless apps.

Developing serverless apps
Serverless computing is a way for developers to build apps without the headache of managing
infrastructure. More specially, it enables them to write in serverless code without having to:

Provision a server
Ensure its functionality
Create test environments on a server
Maintain server uptime

This frees up teams and resources to focus their attention on accelerating innovation in today’s
competitive digital economy.

https://blogs.bmc.com/blogs/serverless-computing/
https://blogs.bmc.com/blogs/continuous-innovation/


What’s the Serverless Framework?
One particular framework is known as the Serverless Framework. This open-source framework is
free, of course, and written using Node.js. Serverless is the first framework developed for building
applications on AWS Lambda, a serverless computing platform that’s part of the Amazon Web
Services suite.

A couple of lambda functions can accomplish some simple tasks through a serverless app or an
entire back-end composed of hundreds of lambda functions. Serverless supports all runtimes
offered within your chosen cloud provider.

Keep in mind the best practices explained below are not the only practices. These practices all rely
on a set of underlying assumptions. We’ll talk specifically about Lambda, simply because it’s so
popular. But remember that Lambda isn’t the only serverless option.

Serverless best practices
When working with the Serverless Framework, here are the top best practices worth adopting to
ensure your applications are secure and robust.

https://en.wikipedia.org/wiki/Node.js
https://www.datree.io/resources/serverless-best-practices


Start locally
When your Lambda starts to get complicated, app developers find themselves making numerous
tweaks to configurations and functions code. Each change leads to waiting for the code to deploy
and the rest of the stack to go live.

To save yourself time, start locally.

Instead of operating your dev cycle as "save, open the console, deploy, wait, refresh, wait, refresh,"
shift the cycle to "save, build, refresh." The AWS Serverless Application Model directs line interface
can replicate lambdas and API endpoints and several sources—all in a local Docker container.

Use 1 function per route
When using HTTP, it is a best practice to avoid single function proxy. Why? This method does not:

Scale well
Isolate issues

If the function of a series of routes ties strictly to a single table, it is decoupled from the application.
This best practice may add a level of complexity for management, but it helps isolate errors and
issues when scaling your app.

Don’t rewrite your code
JavaScript is the higher-order language in a Serverless Framework. When writing JavaScript code, it
will be interpreted and executed in the most performative way possible.

Rewriting code is not the way to solve a performance problem. Instead, there are many ways to
improve your program:

Combining multiple requests to other services
Stopping loops when you have enough matches
Returning helpful error information

https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/
https://blogs.bmc.com/blogs/aws-serverless-applications/
https://blogs.bmc.com/blogs/docker-101-introduction/
https://thenewstack.io/6-best-practices-for-high-performance-serverless-engineering/


Manage code, not configurations
The Serverless Framework lets you pass a dedicated deployer role to AWS CloudFormation to run
deployments with the architecture. CloudFormation deployment role is the AWS path out of 'config
that is only stored in the UI' their Serverless Application Model lets you create YAML that defines
your stack in a file you can use to track changes.

You can use a different role for each project or team and apply the least privilege principle to the
deployment pipeline.

Perform load testing
Load testing your lambda functions will help determine the amount of memory to allocate and the
optimum timeout value.

There may be complex applications in a serverless environment, and you may not be aware of
dependencies within your applications that could not perform a function on a large scale. Load
testing allows you to catch potential issues that may be vital to maintaining a highly available
application.

https://blogs.bmc.com/blogs/aws-cloudformation/
https://blogs.bmc.com/blogs/high-availability/


Deploy API gateways for security
Security should be a top priority for your applications, whether for a traditional architecture or
serverless.

Implementing an API gateway as the event source for your lambda function is vital. It would be best
if you secured API Gateway endpoints. This API Gateway provides several options for securing your
API.

Serverless supports agile software design
Developing applications with a Serverless Framework is the modern approach to application
development. There are other best practices to explain when using a Serverless Framework, and
over time, you will find what practices best serve you and your project goals.

As your project progresses, your users can tell you what needs to be improved.

Related reading
BMC DevOps Blog
The AWS Well-Architected Framework: 5 Pillars & Best Practices, part of our AWS Guide
Application Performance Management in DevOps
Bring Kubernetes to the Serverless Party
Docker Security: 14 Best Practices for Securing Docker Containers
AWS Serverless Application Model

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/aws-well-architected-framework/
https://blogs.bmc.com/blogs/application-performance-management-in-devops/
https://blogs.bmc.com/blogs/bring-kubernetes-to-the-serverless-party/
https://blogs.bmc.com/blogs/docker-security-best-practices/
https://blogs.bmc.com/blogs/aws-serverless-applications/

