
THE SOFTWARE DEVELOPMENT LIFECYCLE (SDLC): AN
INTRODUCTION

The Software Development Lifecycle (SDLC) describes the systematic approach to developing
software. In this article, we'll look at:

The SDLC
Who uses it
SDLC stages
Agile vs Waterfall application
Helpful resources

What is the software development lifecycle?
The SDLC helps to ensure high quality software is built and released to end-users quickly and at an
optimized cost. How you determine the quality of your software might vary, but general
measurements include:

The robustness of the software functionality
Overall performance
Security
Ultimately, the user experience

Regardless of which software development you subscribe to—Agile, Waterfall, or other



variations—this lifecycle can apply.

Who uses the SDLC?
Not so long ago, Watt S. Humphrey, known as the father of quality in software, remarked:

“Every business is a software business.”

More recently, Microsoft CEO Satya Nadella repeated the quote: “Every company is a software
company”.

Of course, we can point to many specific technology companies who develop software. If there's an
app, someone developed it.

But business organizations that aren't "in software" rely on on software and technology to do
business (which is to say, all of them). These organizations will need to adapt at least some off-the-
shelf solutions, likely to tweak software to align and optimize with their unique business operations.

That's why people beyond developers or engineers should understand the SDLC approach: many
stakeholders might be involved in various stages. Plus, cross-functional teams might adopt the
SDLC to collaborate on Agile- and DevOps-based projects. Following modern SDLC practices and
frameworks can significantly improve the software development process.

So, who uses the SDLC? In short, everyone.

Stages of the SDLC
The SDLC follows a series of phases involved in software development. Depending on the SDLC
framework, these phases may be adopted sequentially or in parallel. (More on this below.)

The SDLC workflows may involve repeated transitions or iterations across the phases before
reaching the final phase.

Phase 1: Requirement Analysis
The initial stage of the SDLC involves stakeholders from tech, business, and leadership segments of
the organization. In this initial state, you'll:

Analyze and translate business questions into engineering problems by considering a variety of
factors: cost, performance, functionality, and risk.
Evaluate he broad scope of the project and then identify available resources.
Consider project opportunities and risks across the technical and business aspect for every
decision choice in each SDLC phase.

https://quidgest.com/en/articles/every-business-software-business/
https://news.microsoft.com/en-gb/2018/11/07/microsoft-ceo-satya-nadella-on-fuelling-tech-intensity-in-the-uk/
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/
https://blogs.bmc.com/blogs/devops-engineer-roles-and-responsibilities/


This stage may continue for a prolonged period and includes provision for strategic changes as the
SDLC evolves.

(Learn how to write software requirements specifications, also known as SRS.)

Phase 2: Feasibility Study
During this stage, evaluate the requirements for feasibility. Not every single requirement will be
feasible for your current scope. The goal of this stage is to quantify the opportunities and risk of
addressing the agreed requirements with the variety of resources and strategies you have available.

The feasibility study evaluates the following key aspects, among others:

Economic: Is it financially viable to invest in the project based on the available resources?
Legal: What is the scope of regulations and the organization’s capacity to guarantee
compliance?
Operational: Can we satisfy the requirements within scope definition according to the
proposed operational framework and workflows?
Technical: What is the availability of technology and HR resources to support the SLDC
process?
Schedule: Can we finish the project in time?

Executive decision makers should answer and document these questions and study them
carefully—before proceeding with the software design and implementation process.

Phase 3: Architectural Design
Next, the appropriate technical and business stakeholders document, review, and evaluate the
design specifications and choices against the risk, opportunities, practical modalities, and
constraints.

In this phase, you'll have technical documentation that specifies:

Systems architecture
Configurations
Data structure
Resource procurement model

Desired output can include prototypes, pseudocode, minimal viable products (MVPs) and/or
architecture reports and diagrams that include the necessary technology details:

High-level design details include the desired functionality of software and system modules.
Low-level design details can include the functional logic, interface details, dependency issues,
and errors.

Phase 4: Software Development
Implementation follows the design phase. Several independent teams and individuals collaborate
on feature development and coding activities. Frequently, individual developers will build their own
codebase within the development environment, then merge it with the collaborating teams in a
common build environment.

https://blogs.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/


While the requirements analysis and design choices are already defined, feedback from the
development teams is reviewed for potential change in direction of the design strategies.

This is the longest process in the SDLC pipeline and it assists subsequent phases of software testing
and deployment.

(Explore behavior-driven development, one approach to developing software.)

Phase 5: Testing
In this phase, you'll use testing to:

Investigate the performance of the software
Discover and identify potential issues to fix or address

Testing teams develop a test plan based on the predefined software requirements. The testing plan
should:

Identify the resources available for testing
Provide instructions and assignments for testers
Select types of tests to be conducted
Determine what to report to technical executives and decision makers

Testers often work collectively with development teams and rework the codebase to improve test
results.

It is very common for teams to repeat the development and testing phases several times, before
moving onto the final stages of deploying and and releasing the software.

(Consider the benefits of testing automation and testing frameworks, like regression testing, BDD, and
TDD.)

Phase 6: Deployment
You've reached the final phase of the SDLC pipeline when your finished product has passed the
necessary tests. Now, make it available for release to end users in the real environment. Several
procedures and preparation activities are involved before a software product can be shipped,
including:

Documentation
Transferring ownership and licensing,
Deploying and installing the product on customer systems

(Learn more about the deployment and release stages.)

Traditional vs modern SDLC methodologies
With traditional SDLC methodologies, such as Waterfall, these phases are performed independently
in series by disparate teams. Under the Agile methodology, these phases are performed in short,
iterative, incremental sprints.

https://blogs.bmc.com/blogs/behavior-driven-development-bdd/
https://blogs.bmc.com/blogs/testing-automation/
https://blogs.bmc.com/blogs/regression-testing/
https://blogs.bmc.com/blogs/testing-frameworks-unit-functional-tdd-bdd/
https://blogs.bmc.com/blogs/testing-frameworks-unit-functional-tdd-bdd/
https://blogs.bmc.com/blogs/software-deployment-vs-release/




(Agile vs Waterfall SDLC methodologies)

An SDLC pipeline and framework can be as varied as the number of organizations adopting
them—virtually every company tries to adopt a strategy that works best for their organization.

In today’s era of software development, however, these stages are not always followed sequentially.
Modern SDLC frameworks such as DevOps and Agile encourage cross-functional organizations to
share responsibilities across these phases conducted in parallel.

For instance, the DevOps SDLC framework encourages Devs, Ops, and QA personnel to work
together for continuous development, testing and deployment activities. Additionally, the testing
procedure is shifted left and early in the SDLC pipeline so that software defects are identified before
it’s too late to fix them.

Related reading
BMC DevOps Blog
How & Why To Become a Software Factory
Differences Between Continuous Integration (CI), Delivery (CD), and Deployment
Orchestration in SDLC for DevOps
Agile Roles and Responsibilities
15 Best Practices for Building a Microservices Architecture

https://blogs.bmc.com/blogs/agile-vs-waterfall/
https://blogs.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/
https://blogs.bmc.com/blogs/what-is-shift-left-shift-left-testing-explained/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/software-factory/
https://blogs.bmc.com/blogs/devops-continuous-integration-delivery-deployment/
https://blogs.bmc.com/blogs/devops-orchestration/
https://blogs.bmc.com/blogs/agile-roles-responsibilities/
https://blogs.bmc.com/blogs/microservices-best-practices/

