SALTING VS STRETCHING PASSWORDS FOR ENTERPRISE
SECURITY

F
I
)
8
4
)
0
8
g
B

Password security is important. Salting and stretching a password are two ways to make passwords
more secure from attackers. You can use the strategies separately or deploy them in tandem for the

most security.

This article covers the logic of password protection, including salting and stretching passwords.

Database attacks

Because passwords are a user's key to their data, they are a key target for attackers.

Popular methods of password attacks happen through brute force and rainbow attacks:

» Brute force attacks are a trial and error approach where a computer guesses until it gets it
right. This may sound ineffective, but computers can try many, many times. In this era of
computing, “Hashcat breaks an 8 character full coverage (a-zA-Z0-9!-=) password in 26 days
on a single 1080 Nvidia GPU."

* Rainbow attacks are another form of cracking passwords, where all possible combinations of
hashed passwords are pre-computed and stored in a dictionary. Then, an attacker runs
through their list of hashes to find a match. If their scan returns a match, then they have the
password.

https://blogs.bmc.com/blogs/enterprise-password-management-best-practices/
https://blogs.bmc.com/blogs/enterprise-password-management-best-practices/
https://blogs.bmc.com/blogs/security-vulnerability-vs-threat-vs-risk-whats-difference/
https://security.stackexchange.com/questions/43683/is-it-possible-to-brute-force-all-8-character-passwords-in-an-offline-attack
https://security.stackexchange.com/questions/43683/is-it-possible-to-brute-force-all-8-character-passwords-in-an-offline-attack
https://web.archive.org/web/20190315165238/https://www.darknet.org.uk/2016/08/ighashgpu-gpu-based-hash-cracking-sha1-md5-md4/

Passwords help prevent attacks

First things first: nothing online is perfectly secure. Not even computers not connected to the
internet are perfectly secure. We use passwords to minimize risk of attack, not to guarantee it will
never happen.

Though you cannot guarantee security, there are some ways to increase database security. Salting
and stretching passwords are two such strategies:

1. Salting passwords. Designing the password encryption so only one password is compromised
rather than the whole database. Attackers will attack. Don't make it easy for them to run off
with the whole loot at once.

2. Stretching passwords. Lengthening the password (on the database side) so the time it takes to
crack the password becomes too expensive for attackers. The idea is that attackers will opt for
easier targets—makes common sense, similar to the rumor that crime rates fall proportionately
to how high one travels up the hills in San Francisco.

Ways to store passwords
To understand password salting and stretching, let's look at ways companies can store their data.

It is critical to note: Responsibility does not fall on the company's shoulders if an individual user
compromises their own password. A company can encourage a user to use stronger passwords by
enforcing character limits and special character sequences. A company, however, cannot control if a
user allows someone walking by to see their password.

A company's responsibility is to secure their stored passwords.

Direct password storage

Storing the password as-is is the worst possible way to store passwords in a database. If a person
with no computer received the list, they can read the whole list of passwords as they are.

https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/

Password Database

123456 123456

123456789 |123456/789

gwerty gwerty

password password

Simple hash function

A better, but far from perfect, option is to apply a hash function to the password and store the hash
value in the database. This is an added step between the phrase the user inputs and the phase
(hash) that ultimately gets stored in the database.

Password Hash Function Database (Hex MD5 Hash)

123456 Hash = H(password) |[8531ab28b1ffc32016b5f38e7f650f7b

123456789 |Hash = H(password) |4b9ff53081aee2b193e85a007c5bdf34

gwerty Hash = H(password) |c45a108d730a41f40ff525b5a3b039bb

password |Hash = H(password) |0c6975129201c9956a91428a952923c4

Here's how it works:
If an attacker were to receive or obtain the list of passwords (the right-most column, above), but the
passwords are hashed, the values are unreadable. Therefore, a computer would have to figure out
what function was used to turn those values into the original password.

Hashing sounds good, but it is an all-or-nothing proposition: If an attacker were to crack the hash
function, then the hacker could read all the passwords in the database.

Salting a password

This is where salting comes in. A salt adds a string of characters to the user's passwords to just
before the password undergoes hashing. The salt accomplishes two things:

Attackers cannot do a dictionary lookup to see how popular passwords get hashed. Because
there is a random string of values added to the password, passwords no longer exist as “popular
strings” and are more random. Their complexity has increased greatly.

A unique salt per user prevents an attacker from guessing the hash function and unlocking an
entire database of passwords. The added step between the password and the hash function makes
it so if an attacker gets the hash function figured out, they still have to run through many more
combinations to guess the unique salt value.

https://en.wikipedia.org/wiki/Hash_function

Password Salt Hash Function Database (Hex MD5 Hash)

6d 4d 90
Hash = H(password + |81fd6c878635663a461c47f5hde
123456 9b 18 5c 28
salt) c7b19
Je
203 35 86 |Hash = H(password + |7d17f9a7abcdf9786644c1677f8
123456789 (p
98 d8 a2 95|salt) cd5cbh
el 86ed
Hash = H(password + |958a562333317cd430e23683d2
gwerty b2 49 e5
salt) 1fdaaf
24 bb
54 0a 45 8b|Hash = H(password + |2ab60f7bd474ceaf133248e28b8
password
f6 6592 fb |salt) Ocb49

Stretching a password

Finally, a tried-and-true method to frustrate attackers is stretching passwords before they're saved
to the database. The primary aim of stretching a password is to make deciphering the password
more costly—whether with memory, time, or money—than an attacker can afford.

In stretching, the strength of a password is measured by its bits of key strength. Methods of
lengthening the number of bits a password has comes down to the hash function. Usually, hash
functions are looped thousands of times, simulating randomness and adding more and more bits to
the complexity of a password passed to the database.

Hash Function

Password Salt (10,000 loops) Database (Hex MD5 Hash)

0486bd80c7bff90b3c087571f28c515104
e9f3bcad43b41d0cc875fch2acfbab78cd6
8caddb776a2f8112fb76e2a2c374585e8
634bc0a97ff305eb9704daf2e90

6d 4d 90 |Hash = H-
123456 9b 18 5¢ |1000{password +
28 7e salt)

561621c4a2832a326688a8db188159db

9200ce8e3d87009f9decdbcd95f40e657

1db20bc6b479c223eh742e3f5778b1c69
ddc8cde3c57902f1ec2fb2cb803d00

69d3b54b1af944358e43e66465632a46

7c2e0f4d8a385178efbcfB8a09ced36c409
722al7eled05ec2e2c9e6b58a93a1f23f
cd5809b6ced0517ec000d87119700

cbelbedef759ef0e5e32ed455555eaf39¢
253b616e346d804f308ec622583f307e5
26930757478b6fda3d7451e9e85170bac
7c9cb145f9c0be5581ac0936ad5f

20f3 35 |Hash = H-
123456789|86 98 d8 |1000(password +
a2 95 salt)

el 86 e4 |Hash=H-
gwerty b2 49 e5 [1000(password +
24 bb salt)

54 0a 45 |Hash =H-
password |8bf6 65 |1000(password +
92 fb salt)

How to stretch passwords

There are popular, well-developed tools one can use to start stretching passwords, including
PBKDF2 and Bcrypt. Today, 128-bit keys are a common benchmark for effective password
encryption.

For the developer, the goal of password stretching software is to increase computational time on
the attacker's system. Stretching maximizes the difficulty an attacker may have to decrypt the data,
while still maintaining usability of the application itself.

When a password is encrypted, the user has to wait for their password to run through the hoops and
get verified against their actual password. If it takes the user's computer 3 minutes to hash their
password and check it against the database, that might be unreasonable. But if the user's password
is submitted and verified with the database in a few milliseconds, then there could be room for
improvement.

For companies, perhaps the best improvement is to limit the instances of user passwords.

Additional resources

For more on cybersecurity topics and practices, browse our BMC Security & Compliance Blog or
check out these articles:

e Cvbersecurity: A Beginner's Guide

https://support.1password.com/pbkdf2/
https://passwordhashing.com/BCrypt
https://blogs.bmc.com/blogs/categories/secops-security-compliance/
https://blogs.bmc.com/blogs/cybersecurity/

¢ What Is a Cyber Resilience Strategy?
¢ Introduction to Enterprise Security
¢ 5 Examples of Recent Data Breaches

https://blogs.bmc.com/blogs/cyber-resilience-strategy/
https://blogs.bmc.com/blogs/enterprise-security/
https://blogs.bmc.com/blogs/data-breaches/

