
REFACTORING MAINFRAME CODE TO ACCELERATE
DEVELOPMENT

Keeping mainframe development moving at the speed required by the business can be a challenge.
Many monolithic applications, developed and added onto over the course of years, or even
decades, are self-contained. As software development and delivery become more modernized with
automation and orchestration, the cost of leaving these applications alone is growing more
expensive than breaking them apart and connecting them to macro and microservices. In a time of
doing more with less, many leaders are taking a second look at their root mainframe problems and
seeking ways to generate value faster.

It's not COBOL, it’s what has been done with it
The size of COBOL programs is often cited as a barrier to accelerating the release velocity of
mainframe applications. COBOL’s functionality as a programming language is why it has remained
the same for half a century. It’s not the language, but its implementation that is the real problem.
With numerous functions housed in one program, it becomes difficult for developers to understand,
edit, and compile legacy code and then test their changes. Even if they change only a few lines, they
need to check out the entire program and test it, then fix anything that breaks along the way.

Figure 1. Why maintaining COBOL applications is a development nightmare.

Transforming the mainframe as a growth platform
Whether they’re trying to unlock value of mainframe data, grow artificial intelligence for IT
operations (AIOps), or enforce compliance and increase digital agility, enterprises see the mainframe
as a growth platform. Most enterprises that embark on modernization journeys discover that they
can’t offload 20 percent of the mainframe’s workloads to other platforms. But that doesn’t mean they
aren’t optimizing the developer experience and making it easier for multiple developers to work
concurrently on the mainframe. One big step forward is providing the tools to help developers break
apart monoliths into separate, callable subprograms that are easier to understand, update, and test.
This enables new functionality to be infused onto mainframes and prepares the way for Java- and
Git-based source code management (SCM) so multiple developers can work on the same
application. Being able to track a data field through the program from input to output and visualize
static and dynamic interoperability, along with dependencies, logic, and syntax, helps developers
understand monolithic application functions and circumvent problems, giving them more
confidence in their changes and making development teams faster and more agile.

https://www.bmc.com/documents/solution-briefs/bmc-ami-devx-code-insights.html
https://www.bmc.com/documents/solution-briefs/bmc-ami-devx-code-insights.html

Figure 2. What if monoliths could be refactored into separate callable components? They can be.

Long-term modernization, immediate value
Modernization itself isn’t fast, but there’s no real reason to stay stuck with the status quo. Developers
want to build on growing solutions, and the sooner enterprises transform monoliths into functional
modern applications, the sooner they can curb development costs by enabling more developers to
work on the mainframe. Having a diagnostic tool that can scan and visualize an application’s
underpinnings is critical when there are literally millions of lines of code. Seeing how an application
really works in real time with runtime visualization can show developers where the problems are
before they break the application.

Being able to find and comment out dead code that cannot be logically executed, no matter which
data you use, eliminates a lot of technical debt as developers refactor modern applications that
leverage REST APIs, Git, or Java. A lot of blame is pointed at COBOL, but even COBOL applications
can still deliver value as teams undergo long-term modernizations and digital transformations.

BMC AMI DevX Code Insights, available now provides the functionality to help developers uncover
business logic and create new subprograms that are ready to compile and use. It is already
accelerating the transformation of monolithic code into more modular and usable programs.

BMC AMI DevX Code Insights also gives developers the ability to identify and comment out dead
code. The new Quick Fix capability, available with a right-click on the diagnostic or the identified line,
will comment these lines, which prevents any future developers working on the code from wasting
time by assuming those lines are valid.

Figure 3. The new Quick Fix capability can be used to comment lines for developers.

BMC AMI DevX Code Insights is designed to help developers maintain and extend their applications
with confidence by enabling them to:

Quickly understand unfamiliar code with structure and logic charts
Track data fields through the program from input to output

https://www.bmc.com/it-solutions/bmc-ami-devx-code-insights.html

Break apart monolithic programs using Code Extract
Gain information on how an application really works in real time with runtime visualization

Let’s not underestimate how hard COBOL development can be. It is difficult to quickly understand,
make changes with confidence, and then test. Eliminating dead code—and, more importantly,
breaking apart programs to manageable sizes with modern syntax—will empower mainframe
application developers to deliver quality code, faster.

Listen to the Modern Mainframe podcast, “Refactoring Monolithic Mainframe Code,” to hear how IT
leaders are thinking about modernizing mainframe code and the tactics they’re using.

https://soundcloud.com/modernmainframe/refactoring-monolithic-mainframe-code

