
REDIS®* CACHE ON PRODUCTION: AN OVERVIEW AND BEST
PRACTICES

In the modern landscape of complex applications, cloud-native technologies empower
organizations to build and run scalable applications in public, private, and hybrid clouds.

An in-memory cache has become an essential component for developing loosely coupled systems
that are resilient, manageable, and observable with microservices, containers, and immutable infra-
services.

Unlike traditional databases, in-memory data stores don’t require a trip to disk, reducing engine
latency to microseconds, so they can support an order of magnitude more operations and faster
response times. The result is blazing-fast performance with average read and write operations
taking less than a millisecond and support for millions of operations per second.

Building on earlier experience using caching solutions like Infinispan and Hazelcast, we evaluated
various cloud-based and on-premises cache solutions with the following requirements:

Ability to scale out seamlessly, from a few thousand events per second to multimillion events
Support for various data types and languages
Performance metrics for monitoring
Cache/entry-level time to live (TTL) support

Based on our findings, our BMC Helix SaaS solutions leverage Redis and Redisson Client for faster,

https://blogs.bmc.com/it-solutions/bmc-helix.html


more accurate, and more efficient ways of delivering innovations for the modern enterprise. Redis,
which is short for REmote DIctionary Server, is an in-memory cache data structure that enables low
latency and high throughput data access.

If you’re interested in deploying Redis at your organization, keep reading for some tips and best
practices based on what we’ve learned from our deployment.

In-Memory Caching Service
First, you will need an in-memory caching service that supports Redis, such as one of the cloud and
on-premises in-memory caching services below:

Amazon ElastiCache
Google Cloud Memorystore
Azure Redis Cache
Aiven
Bitnami

Deployment Types
You should choose your deployment type based on your application use cases, scale, and best
practices, while also considering factors such as number of caches, cache size, Pub/Sub workloads,
and throughput.

Figure 1. Non-Cluster deployment with single shard contains one primary
and two replica nodes.

https://aws.amazon.com/elasticache
https://cloud.google.com/memorystore
https://azure.microsoft.com/en-in/services/cache/
https://aiven.io/redis
https://github.com/bitnami/charts/tree/master/bitnami/redis


Figure 2. Cluster deployment with three shards and each contains one
primary and two replica nodes.

Sharding
A shard is a hierarchical arrangement of one to six nodes, each wrapped in a cluster, that supports
replication. Within a shard, one node functions as the read-write primary node, and all the other
nodes function as read-only. Below are a few key points about individual shards:

Up to five replicas per shard (one master plus up to five replica nodes)
Nodes should be deployed in a shard on multiple availability zones or data centers for fault
tolerance
In case of a master node failure, one of the replicas will become the master

A production deployment may choose from three shards with three nodes per shard (one master
and two replicas); each must reside on a different availability zone/data center. The cluster node
type (CPU/memory) and Scale-out and Scale-in decisions are based on the cache types, size, and
number of operations per second.

Every shard in a Redis cluster is responsible for a subset of the hash slots; so, for example, you may
have a cluster with three replication groups (shards), as follows:

Shard 1 contains hash slots from 0 to 5500
Shard 2 contains hash slots from 5501 to 11000
Shard 3 contains hash slots from 11001 to 16383

Redis Client
We zeroed in on Redisson after evaluating the available APIs based on the use cases and data
structure requirements. It provides distributed Java data structures on top of Redis for objects,
collections, locks, and message brokers and is compatible with Amazon ElastiCache, Amazon
MemoryDB for Redis, Azure Redis Cache, and Google Cloud Memorystore.

https://github.com/redisson/redisson


Redis Client Key Usages
A streaming application that processes millions of metric, event, and log messages per second has
various use cases that require low-latency cache operations, which informed our choice of cache
type.

RMap is a Redis-based distributed map object for the Java ConcurrentMap interface that’s
appropriate for:

Use cases where short-lived caches are required
Eviction occurs at cache level and not at key/entry level
Clarity exists on the probable cache size and max insert/retrieve operations

RLocalCacheMap is a near-cache implementation to speed up read operations and avoid network
roundtrips. It caches map entries on the Redisson side and executes read operations up to 45 times
faster compared to common implementations. The current Redis implementation doesn't have a
map entry eviction functionality, so expired entries are cleaned incrementally by
org.redisson.eviction.EvictionScheduler. RLocalCacheMap is appropriate for:

Use cases where the number of cache keys is certain and won’t grow beyond a certain limit
The number of cache hits is high
The workflow can afford infrequent cache hit misses

RMapCache is a cache object that supports eviction at key level and is appropriate for use cases that
require that functionality and situations where ephemeral cache keys must be cleaned periodically.

Redis-based Multimap for Java allows you to bind multiple values per key.

Redis-based RLock is a distributed reentrant lock object for Java.

Monitoring Key Performance Indicators (KPIs)
The following KPIs should be monitored to ensure that the cluster is stable:

EngineCPUUtilization: CPU utilization of the Redis engine thread
BytesUsedForCache: Total number of bytes used by memory for cache
DatabaseMemoryUsagePercentage: Percentage of the available cluster memory in use
NetworkBytesIn: Number of bytes read from the network, monitor-host, shard, and overall
cluster level
NetworkBytesOut: Number of bytes sent out from a host, shard, and cluster level
CurrConnections: Number of active client connections
NewConnections: Total accepted connections during a given period

Redis Is Single-Threaded
Redis uses a mostly single-threaded design, which means that a single process serves all the client
requests with a technique called multiplexing. Multiplexing allows for a form of implicit pipelining,
which, in the Redis sense, means sending commands to the server without regard for the response
being received.



Production Issues
As we expanded from a few caches to several caches, we performed vertical and horizontal scaling
based on the above key metrics and the cost and recommendations. One critical issue we faced was
a warning about high engine CPU utilization, although the application read-write flow was
unchanged. That made the whole cluster unresponsive. Scale out and vertical scaling didn’t help,
and the issue repeated.

Figure 3. Engine CPU utilization of one of the shards that breached a critical
threshold.

Troubleshooting Steps
Get the big keys: use redis-cli –bigkeys to scan the dataset for big keys and get information
about the data types within the dataset
Review the slow log of slower queries
Get the latency details with redis-cli –latency

Key Findings
Publish and subscribe (pub/sub) operations were high on the problematic shard
One of the hash slots had a large number of keys
RMapCache seems to be the culprit

Issues with RMapCache
RMapCache uses a custom scheduler to handle the key-level TTLs, which triggers a large number
of cache entry cleanups, resulting in huge pub/sub and making the cluster bus busy.

After a client publishes one message on a single node, this node will propagate the same message
to other nodes in the cluster through the cluster bus. Currently, the pub/sub feature does not scale
well with large clusters. Enhanced input and output (IO) is not able to flush the large buffer
efficiently on the cluster bus connection due to high pub/sub traffic. In Redis 7, a new feature called
sharded pub/sub has been implemented to solve this problem.

Lessons Learned
Choose cache types based on usage patterns:1.

Cache without key-level TTL
Cache with key-level TTL
Local or near cache

https://redis.io/docs/manual/cli/
https://docs.redis.com/latest/rs/logging/redis-slow-log/
https://redis.io/docs/reference/optimization/latency-monitor/


For a cache with key-level TTL, ensure that the cache is partitioned to multiple logical cache
units as much as possible to distribute among shards. The number of caches may grow by a
few thousand without an issue. Short-lived caches with cache-level TTL are an option.

While leveraging the Redisson or other client implementations on top of Redis, be careful with2.
the configuration and impact on the cluster.
Ensure that the value part is not a collection (if a collection is unavoidable, limit its size).
Updating an entry on the collection value type has a large impact on the replication.

Conclusion
Looking to provide a real-time enterprise application experience at scale? Based on our usage and
experience, we recommend that you check out Redis along with the Redisson Client.

Experience it for yourself with a free, self-guided trial of BMC Helix Operations Management with
AIOps, a fully integrated, cloud-native, observability and AIOps solution designed to tackle
challenging hybrid-cloud environments.

*Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis Ltd. Any use by
BMC is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation
between Redis and BMC.

https://redis.io/docs/about/
https://github.com/redisson
https://blogs.bmc.com/forms/bmc-helix-operations-management-trial.html
https://blogs.bmc.com/forms/bmc-helix-operations-management-trial.html

