WHAT IS PUB/SUB? PUBLISH/SUBSCRIBE MESSAGING
EXPLAINED

Known as pub/sub, Publish/Subscribe messaging is an asynchronous service-to-service
communication method used in serverless and microservices architectures. Basically, the Pub/Sub
model involves:

* A publisher who sends a message
e A subscriber who receives the message via a message broker

In this article, we'll see how pub/sub works, look at pros, cons, and use cases, and share a tutorial
for setting up simple pub/sub messaging.

Basics of pub/sub messaging

With the popularity of decoupled and microservices-based applications, proper communication
between components and services is crucial for overall application functionality. Pub/Sub
messaging helps with this in two crucial ways:

* Allowing developers to create decoupled applications easily with a reliable communication
method
e Enabling users to create event-driven architectures easily

https://blogs.bmc.com/blogs/microservices-vs-serverless/
https://blogs.bmc.com/blogs/microservices-architecture/
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/

Subscriber 01

Subscriber 02

message

Fublisher 01

A\ 4

hJ

| Topic
SEEESE -y 5 m l:l
'.---------.
r-------.
Publisher 02 - .

A 4

Subscriber 03

Publisher 03

Subscriber 04

A pub/sub model allows messages to be broadcasted asynchronously across multiple sections of
the applications.

The core component that facilitates this functionality is something called a Topic. The publisher will
push messages to a Topic, and the Topic will instantly push the message to all the subscribers. This
is what differentiates the Pub/Sub model from traditional message brokers, where a message
queue will batch individual messages until a user or service requests these messages and retrieves
them.

Whatever the message is in the Pub/Sub model, it will be automatically pushed to all the
subscribers. The only exception is user-created policies for subscribers that will filter out messages.

This approach makes it possible to create event-driven services without constantly querying a
message queue for messages. It also enables developers to create different isolated functions using
the same message (data) that can be executed parallelly with the ability to serve multiple
subscribers.

The Pub/Sub pattern isolates publishers from subscribers so that publishers do not need to know
where the message is being used while the subscriber does not need to know about the publisher.
This helps to improve the overall security of the application organically.

Advantages of publish/subscribe pattern

A distributed microservices-based application developed using the pub/sub pattern benefits a
whole organization, from software architects to QA engineers.

Here are the advantages of pub/sub:

Decoupled/loosely coupled components

Pub/Sub allows you to separate the communication and application logic easily, thereby creating
isolated components. This results in:

e Creating more modularized, robust, and secure software components or modules
e Improving code quality and maintainability

Greater system-wide visibility

The simplicity of the pub/sub pattern means that users can understand the flow of the application
easily.

The pattern also allows creating decoupled components that help us get a bird's eye view of the
information flow. We can know exactly where information is coming from and where it is delivered
without explicitly defining origins or destinations within the source code.

Real-time communication

Pub/sub delivers messages to subscribers instantaneously with push-based delivery, making it the
ideal choice for near real-time communication requirements. This eliminates the need for any polling
to check for messages in queues and reduces the delivery latency of the application.

Ease of development

Since pub/sub is hot dependent on programming language, protocol, or a specific technology, any
supported message broker can be easily integrated into it using any programming language.
Additionally, Pub/Sub can be used as a bridge to enable communications between components
built using different languages by managing inter-component communications.

This leads to easy integrations with external systems without having to create functionality to
facilitate communications or worry about security implications. We can simply publish a message to
a topic and let the external application subscribe to the topic, eliminating the need for direct
interaction with the underlying application.

Increased scalability & reliability

This messaging pattern is considered elastic—we do not have to pre-define a set number of
publishers or subscribers. They can be added to a required topic depending on the usage.

The separation between communication and logic also leads to easier troubleshooting as
developers can focus on the specific component without worrying about it affecting the rest of the
application.

Pub/sub also improves the scalability of an application by allowing to change message brokers
architecture, filters, and users without affecting the underlying components. With pub/sub, a hew
messaging implementation is simply a matter of changing the topic if the message formats are
compatible even with complex architectural changes.

https://blogs.bmc.com/blogs/programming-languages/

Testability improvements

With the modularity of the overall application, tests can be targeted towards each module, creating
a more streamlined testing pipeline. This drastically reduces the test case complexity by targeting
tests for each component of the application.

The pub/sub pattern also helps to easily understand the origin and destination of the data and the
information flow. It is particularly helpful in testing issues related to:

e Data corruption
e Formatting
e Security

Disadvantages of pub/sub pattern

Pub/Sub is a robust messaging service, yet it is not the best option for all requirements. Next, let's
look briefly at some shortcomings of this pattern.

Unnecessary complexity in smaller systems

Pub/sub needs to be properly configured and maintained. Where scalability and a decoupled
nature are not vital factors to your app, implementing Pub/Sub will be a waste of resources and
lead to unnecessary complexity for smaller systems

Media streaming

Pub/sub is not suitable when dealing with media such as audio or video as they require smooth
synchronous streaming between the host and the receiver. Because it does not support
synchronous end-to-end communications, pub/sub messaging is ill-suited for:

 Video conferencing
e VOIP
e General media streaming applications

Use cases for publish/subscribe messaging
So, when is the right time to use pub/sub?

The Pub/Sub pattern can be used across different industries to facilitate real-time and distributed
communications. For instance, automation is a key area that benefits from this pattern.

The following sections describe common use cases of Pub/Sub.

loT (Internet of Things)

With smart devices, we need a reliable and efficient way to gather and distribute information. A
control node or server can publish updates that will be automatically delivered to all the subscribed
loT devices.

End-user loT devices can also act as publishers and publish notifications, sensor information, etc., to
the cloud, which will then be notified to the user.

https://blogs.bmc.com/blogs/data-streaming/
https://blogs.bmc.com/blogs/data-streaming/
https://blogs.bmc.com/blogs/it-automation/
https://blogs.bmc.com/blogs/iot-internet-of-things/

System monitoring & event notifications

Pub/sub allows users to create topics to gather system information and push them to visualization
and notification frontends.

This is highly useful when dealing with large-scale deployments:

1. Messages can be categorized into different topics.
2. All servers or services can publish the data to these common topics without the need for
separate notification pipelines.

We can extend this functionality further by subscribing maintenance or management functions to a
topic. For example, if a server reports an error, it will trigger a function to automatically replace that
server.

Database backup & replication

It's essential to make backups with multiple databases spread across different technologies and
vendors. We can configure periodic backups or snapshots using cron jobs.

However, suppose that we need to move these backups to different regions or cloud storage. In that
case, we can use Pub/Sub messaging to create a pipeline that will push a message informing of
completed backup. Then, a subscribed function will use that message as the trigger to start the
migration or copy process.

Log management

Pub/Sub can act as the go-between to aggregate and distribute logs. We can collect logs from
multiple locations and push them to subscribed services like elastic search or simply store them
across different designations.

Logs can be filtered by issues, audit trails, notification, background tasks, etc., and direct to different
subscribers, enabling proper log management.

Pub/sub messaging services

There are multitudes of Pub/Sub messaging services, from dedicated message brokers to cloud
offerings. Following is a list of some common Pub/Sub services.

» Apache Kafka. Developed by Apache, Kafka has robust Pub/Sub messaging features with
message logs.

* Faye. Simple Pub/Sub service designed to power web applications with servers designed for
NodeJS and Ruby.

e Redis. This is one of the most popular message brokers with support for both traditional
message queues as well as pub/sub pattern implementations.

* Amazon SNS. The Amazon Simple Notification Service is a fully managed service that offers
Pub/Sub messages.

* Google Pub/Sub. GCP offering for pub/sub messaging service implementation.

e Azure Service Bus. A robust messaging service (Maa$S) solution that offers Pub/Sub pattern.

https://blogs.bmc.com/blogs/siem-vs-log-management-whats-the-difference/
https://blogs.bmc.com/blogs/redis-basics/

Simple example: Publish/subscribe messaging

Since we now understand the Pub/Sub concepts, let's look at a simple workflow using Google
Pub/Sub. It will publish a message to a topic and trigger a subscribed Google function to print the
pushed message.

Step 1. Creating the topic

The first step is to create a Topic in Google Pub/Sub so that we can publish messages to that topic.

Create a topic

A topic forwards messages from publishers to subscribers.

- Topic ID*
‘ Test_Topic

Topic name: projects/test-applications-315905/topics/Test_Topic
Add a default subscription @

[] useaschema @
[] use a customer-managed encryption key (CMEK)

CANCEL CREATETOPIC

https://blogs.bmc.com/blogs/google-cloud-functions/

Step 2. Set up the trigger

Navigate inside the created topic (Test_Topic) and click on the “Trigger Google Function” option. It
will let you create a Google Function with the created topic as the trigger.

Google Cloud Platform

8¢ Test Applications v

Q, Search products and resources

T .
#%. & Test_Topic + PUBLISHMESSAGE @ VIEWMESSAGES | + TRIGGER CLOUD FUNCTION
.
B -
o Export options have moved to the Create subscription drop-down menu under the Subscriptions tab below.
= GOTIT
Topic details
B
= Topic name projects/test-applications-315905/topics/Test_Topic 10
. x x
Export to BigQuery Export to Cloud Storage
Create a Dataflow job to export data to a BigQuery Create a Dataflow job to export data to a text or Avro file
table. in Cloud Storage.
EXPORT TO BIGQUERY EXPORT TO TEXT EXPORT TO AVRO
1hour 6hours 1day 7days 30days RESETZOOM
Publish message request count Publish message operation count
Requests/sec Operations/sec
1.0 10
0.8 08
A No data is available for the selected 6 A Nodata is available for the selected 5
time frame 0.4 time frame 04
02 02
1 315 19:30 194 1 9:15 3:30 154
Encryption key Google-managed
Schema name —
B o !
Message encoding -
Labels —
3

& IMPORT ~

W DELETE C

Test_Topic

{ PERMISSIONS LABELS

Edit or delete permissions below or
‘Add Member' to grant new

. Show inherited permissions

= Filter Enter property name or value
Role/Member
P Cloud Build Service Account (1)
» Cloud Build Service Agent (1)
b Cloud Functions Service Agent (1)
P Container Registry Service Agent (1)
p Editor (1)

b Owner (1)

HIDE INFO PANEL

STORAGE POLIC >

+2 ADD MEMBER

Inheritance

Step 3. Create the Google function (print_message_pubsub_test)

The first screen lets you name the Google function and set up the topic as the trigger. We will be
using Python to create the function that simply captures the pushed data and send them to

Webhook.site.

Also, we'll be utilizing the requests library to create a POST request to send the data.

https://blogs.bmc.com/blogs/python-tooling/

= Google Cloud Platform $# Test Applications v

(] Cloud Functions € Create function from prototype

o Configuration — e Code

Basics

Function name *
print_message_pubsub_test 7]

Region
us-centrall * @

Trigger

& Cloud Pub/Sub

Trigger type
Cloud Pub/Sub -

Select a Cloud Pub/Sub topic *
projects/test-applications-315905/topics/Test_Topic -

[[] Retryon failure @

SAVE CANCEL

RUNTIME, BUILD AND CONNECTIONS SETTINGS 4

NEXT CANCEL

Cloud function code block:

= Google Cloud Platform &= Test Applications Q, Search products and resources

[] Cloud Functions € Edit function 1<
Q Configuration — e Code
Runtime Entry point
[Py'thon 3.8 ~ @] get_quote (2]
Source code 1 import base64
<] Inline Editor - 2 import requests
3
4
+ 5 def get_guote(event, context):
[# Decode the Message Data
E main.py 7 message = basefd.béddecode(event['data']).decode(utf-8')
8
9 # Create Reguest
8 requirements.txt 1e url = "https://webhook.site/ -739c28ebd7ad"”
11 request_headers = {"Content-type": "application/json"}
12 request_data = {"gquote": message}
13
14 response = requests.post{url, data=request_data, headers=reguest_headers)
15
16 # Print Response
17 print{response.status_code)
18 print{response.text)
19

import base64
import requests

def get quote(event, context):
Decode the Message Data
message = base64.b64decode(event).decode('utf-8")

Create Request

url = "https://webhook.site/XXXXXXX-XXXX-XXXX-XXXX-739c28ebd7ad"
request headers = {"Content-type": "application/json"}

request data = {"quote": message}

response = requests.post(url, data=request data, headers=request headers)
Print Response

print(response.status code)
print(response.text)

Once the function is deployed successfully, you will notice that it indicates the Test_Topic as the
trigger for the function.

= Google Cloud Platform &= Test Applications Q, Search products and resources
(] Cloud Functions Functions K CREATE FUNCTION CREFRESH
= Filter Filter functions 7] m
O [] Name T Region Trigger Runtime Memory allocated Executed function Last deployed Authentication {
O] print_message_pubsub_test us-centrall Topic: Python 3.8 256 MiB get_guote 16 Jul 2021,
Test_Topic 21:13:56

Step 4. Set up the publisher

In this step, let's create a simple Python program to act as the publisher.

We will utilize the google cloud pubsub_v1 library to create a Publisher client and get a random
inspirational quote from quotable.io. Then we will publish a concatenated string of the author and
quote to the topic (Test_Topic)

message_publish.py

from google.oauth2 import service account
from google.cloud import pubsub vl
import requests

Create Authentication Credentials

project id = "test-applications-xxxxx"

topic id = "Test Topic"

gcp _credentials =

service account.Credentials.from service account file('test-applications-
XXXX = XXXXXXXXXX.json")

Create Publisher Client
publisher = pubsub v1.PublisherClient(credentials=gcp credentials)
topic path = publisher.topic path(project id, topic id)

Get a Random Quote

response = requests.get("https://api.quotable.io/random")
json response = response.json()

message = f"{json response} - {json response}"

Publish the Message
data = message.encode("utf-8")
future = publisher.publish(topic path, data)

Print Result
print(f"Published messages to {topic path} - {future.result()}.")

That's it We've successfully configured the messaging pipeline. When we run the
"message_publish" script, it will publish the data to the Test_Topic and trigger the Google Cloud
Function (print_message_pubsub_test), which will send the data to the Webhook site

We can see the messages published to the topic within the Pub/Sub topic.

Messages

To view messages published to this topic, select or create (recommended for testing) a Pull subscription.

Select a Cloud Pub/Sub subscription *
projects/test- /subscriptions/Test_Topic-sub -

e Click Pull to view messages and temporarily delay message delivery to other subscribers.
Select Enable ACK messages and then click ACK next to the message to permanently prevent message delivery to other subscribers. Only a few messages will
be pulled at a time. Click Pull again to retrieve more messages from the backlog. Use this option cautiously in production environments. If you miss the
acknowledgement deadline (10 seconds), the message will be sent again if no other subscribers of this subscription acknowledged the message. Learn more

PULL []] Enable ack messages

= Filter Filter messages 7] m
Publish time Attribute keys Message body on Ack P

16 Jul 2021, 20:39:16 — Carl Jung - The shoe that fits one person pinches another; there is no recipe for living — ACK v
16 Jul 2021, 21:09:34 — MNapoleon Hill - Most great people have attained their greatest success just one step — ACK v
16 Jul 2021, 21:14:13 - Pablo Picasso - | begin with an idea and then it becomes something else. - ACK

16 Jul 2021, 21:14:30 — Virginia Woolf - Some people go to priests; others to poetry; | to my friends. — ACK

16 Jul 2021, 21:14:36 - Epictetus - It is the nature of the wise to resist pleasures, but the foolish to be a slave to - ACK v
16 Jul 2021, 21:14:45 — Jean-Paul Sartre - Freedom is what you do with what's been done to you. — ACK

16 Jul 2021, 21:14:52 — Walter Lippmann - Where all think alike, no one thinks very much. — ACK

The logs of the Google cloud function will indicate that the function was triggered.

Google Cloud Platform

2* Test Applications «

(] Cloud Functions € Function details /'EDIT WDELETE [QcoPY
LA E- 10
@ print_message_pubsub_test version 6, deployed at 16 Jul 2021, 21:13:56 ..~
METRICS DETAILS SOURCE VARIABLES TRIGGER PERMISSIONS LOGS TESTING
Severity

Logs showing 37 messages Default - = Filter Filter logs Z
v B s rmrm e e s P s e e o e B T L TR R,
3 2821-87-16T15:39:39_521862427Z print_message_pubsub_test 8pjs7BbSdhmo Function execution tock 2973 ms, finished with st.
» H 2821-87-16T15:42:24 8896237 Cloud Functions UpdateFunctien wus-centrall:print_message_pubsub_test..
p H 26821-87-16T15:43:56.8431712Z Cloud Functions UpdateFunction us-centrall:print_message_pubsub_test..
» 2821-87-16T15:44:14.7947123382 print_message_pubsub_test 4c4jhjtsreuc Function execution started
[2821-87-16T15:44:15.4508Z print_message_pubsub_test 4dcdjhjtsreuo 288
[26821-87-16T15:44:15.4578745582 print_message_pubsub_test 4c4jhjtsreuo Function execution took 665 ms, finished with sta.
3 2821-87-16T15:44:36_487277841Z print_message_pubsub_test 4c4jydilgn5e Function executiocn started
» 2821-87-16T15:44:31 _BB5Z print_message_pubsub_test 4cd4jydilgn5e 288
p 26821-87-16T15:44:31.8872621212 print_message_pubsub_test 4c4jydiign5e Function execution took 681 ms, finished with sta.
» 2821-87-16T15:44:37 5267012912 print_message_pubsub_test jxcivhvfxs3l Function execution started
[2821-87-16T15:44:38.982Z print_message_pubsub_test jxcivhvfxsil 288
[26821-87-16T15:44:38. 98462957472 print_message_pubsub_test Jxcivhwfxsil Function execution took 1468 ms, finished with st.
3 2821-87-16T15:44:45_424777351Z print_message_pubsub_test jJxci3gspwwBl Function executiocn started
» 2821-87-16T15:44:45_ 9782 print_message_pubsub_test jxcilgspwwdl 288
p 26821-87-16T15:44:45.978%9956662 print_message_pubsub_test jxci3gspvwdl Function execution took 547 ms, finished with sta.
» 2821-87-16T15:44:53.1841508562 print_message_pubsub_test jxciifjolg®t Function execution started
[2821-87-16T15:44:53.5622Z print_message_pubsub_test jxciifjolg9t 208
[26821-87-16T15:44:53.563373897Z print_message_pubsub_test jxciifjolg9t Function execution took 468 ms, finished with sta.

© HNo newer entries found matching current filter.

Finally, we can see all the messages that were received by the Webhook site as shown below.

e e Request Details Permalink Raw content Expertas~ Delete
https-/fwebhook site/ -139c28ebd7ad
- #da3ia Host 2600:1500:2001:2::14 whais
2600-1900-2001-2--14 Date 07/16/2021 9:14:53 PM (a few seconds ago)
07H16/2021 9:14:53 PM Size 73 bytes
D da31abed-
#2a65d Files
2600:1900:2001:2::14
07/16/2021 9:14:45 PM Headers
connection close
#98871 content-length 73
2600:1900:2001:2::14 content-type application/json
07/16/2021 9:14:38 PM accept sys
accept-encoding gzip, deflate
#61e95 user-agent python-requests/2.26.8
2600:1900:2000:1b:400::1¢ host webhook. site
07/16/2021 9:14:30 PM
Query strings
#836Dd —
2600:1900:2000:1b:400::1c Form values
07M16/2021 9:14:15 PM
(empty)
Raw Content Format JSON Word-Wrap Copy
quote=Walter+Lippmann+-+Wheretall+think+alike®2C+notone+thinks+very+much.

Above is the basic structure of any Pub/Sub workflow. We can use it as a simple template and
extend it to facilitate any functionality.

Simple, powerful communication

The Pub/Sub messaging pattern is a powerful yet simple communication method. It acts as the
cornerstone of powering real-time distributed microservices-based applications by handling all the
communication between internal and external components.

Pub/Sub can be used to create asynchronous scalable message flows with minimal delivery delays
due to all the benefits it offers over traditional message brokers.

Related reading

BMC DevOps Blog

15 Best Practices for Building a Microservices Architecture

Service-Oriented Architecture vs Microservices Architecture: Comparing SOA to MSA
3 Kubernetes Patterns for Cloud Native Applications

o Anti-Patterns vs Patterns: What is an Anti-Pattern?

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/microservices-best-practices/
https://blogs.bmc.com/blogs/microservices-vs-soa-whats-difference/
https://blogs.bmc.com/blogs/kubernetes-patterns/
https://blogs.bmc.com/blogs/anti-patterns-vs-patterns/

