
HOW TO CREATE A PANDAS DATAFRAME FROM A DICTIONARY

Here is yet another example of how useful and powerful Pandas is. Pandas can create dataframes
from many kinds of data structures—without you having to write lots of lengthy code. One of those
data structures is a dictionary.

In this tutorial, we show you two approaches to doing that.

(This tutorial is part of our Pandas Guide. Use the right-hand menu to navigate.)

A word on Pandas versions
Before you start, upgrade Python to at least 3.7. With Python 3.4, the highest version of Pandas
available is 0.22, which does not support specifying column names when creating a dictionary in all
cases.

If you are running virtualenv, create a new Python environment and install Pandas like this:

virtualenv py37 --python=python3.7
pip install pandas

You can check the Pandas version with:

import pandas as pd
pd.__version__

https://blogs.bmc.com/blogs/pandas-basics/
https://blogs.bmc.com/blogs/pandas-basics/
https://blogs.bmc.com/blogs/python-tooling/

Create dataframe with Pandas DataFrame constructor
Here we construct a Pandas dataframe from a dictionary. We use the Pandas constructor, since it
can handle different types of data structures.

The dictionary below has two keys, scene and facade. Each value has an array of four elements, so it
naturally fits into what you can think of as a table with 2 columns and 4 rows.

Pandas is designed to work with row and column data. Each row has a row index. By default, it is the
numbers 0, 1, 2, 3, … But it also lets you use names.

So, let’s use the same in the array idx.

import pandas as pd

dict = {'scene': ,

'facade': }

idx =

dp = pd.DataFrame(dict,index=idx)

Here is the resulting dataframe:

Create dataframe with Pandas from_dict() Method
Pandas also has a Pandas.DataFrame.from_dict() method. If that sounds repetitious, since the
regular constructor works with dictionaries, you can see from the example below that the
from_dict() method supports parameters unique to dictionaries.

In the code, the keys of the dictionary are columns. The row indexes are numbers. That is default
orientation, which is orient='columns' meaning take the dictionary keys as columns and put the
values in rows.

pd.DataFrame.from_dict(dict)

Now we flip that on its side. We will make the rows the dictionary keys.

pd.DataFrame.from_dict(dict,orient='index')

Notice that the columns have no names, only numbers. That's not very useful, so below we use the
columns parameter, which was introduced in Pandas 0.23.

It's as simple as putting the
column names in an array and passing it as the columns parameter. One wonders why the earlier
versions of Pandas did not have that.

pd.DataFrame.from_dict(dict,orient='index',columns=idx)

hamlet lear falstaff puck

scene foul murder drunken intrigue

facade fair beaten fat elf

Related reading
BMC Machine Learning & Big Data Blog
Pandas: How To Read CSV & JSON Files
Apache Spark Guide, a series of tutorials
Snowflake Guide
Creating Redshift User Defined Function (UDF) in Python

https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/pandas-read-json-csv-files/
https://blogs.bmc.com/blogs/introduction-to-sparks-machine-learning-pipeline/
https://blogs.bmc.com/blogs/import-data-s3-snowflake/
https://blogs.bmc.com/blogs/amazon-redshift-udf-python/

