ORCHESTRATE ML WORKFLOWS: RETAIL FORECASTING,
INVENTORY MANAGEMENT IN POS AND SUPPLY CHAIN

Predicting point-of-sale (POS) sales across stores, coordinated with inventory and supply chain data,
is table stakes for retailers. This blog explains this use case leveraging PySpark for data and machine
learning (ML) pipelines on Databricks, orchestrated with Control-M to predict POS and forecast
inventory items. This blog has two main parts. In the first section, we will cover the details of a retail
forecasting use case and the ML pipeline defined in Azure Databricks. The second section will cover
the integration between Control-M and Databricks.

Developing the use case in Azure Databricks
Note: All of the code used in this blog is available at this github repo.

In real life, data would be ingested from sensors and mobile devices, with near-real-time inventory
measurements and POS data across stores. The data and ML pipeline is coordinated with Control-M
to integrate the different components and visualize the results in an always-updated dashboard.

The data lands in the Databricks Intelligent Data Platform and is combined, enriched, and
aggregated with PySpark Jobs. The resulting data is fed to different predictive algorithms for training
and forecasting sales and demand with the results visualized in:

e Graphical dashboards
» Written as delta files to a data repository for offline consumption

https://github.com/JoeGoldberg/retail-forecasting-with-azure-databricks

In this post, we will also walk through the architecture and the components of this predictive system.

Data set and schema

The project uses real-world data, truncated in size and width to keep things simple. A simplified and
abridged version of the schema is shown in Figure 1. The location table is a reference table, obtained
from public datasets. The color coding of the fields shows the inter-table dependencies. Data was
obtained partially from Kaggle and other public sources.

Data Schema

inventory SN Location EX N

SKU LocationID StorelD
ProductMame Location LocationlD
StocklLevel Region Address
LeadTime State Details
StorelD Zip
SupplierlD Country
CE U
StorelD SKU SKU
SKU ProductName Category
Category Category Price
Quantity NumberOfProductsSold
Date StorelD
Time SupplierlD
LocationlD
ProductionVolumes
Costs

Figure 1. Example of schema.

Platform and components

The following components are used for implementing the use case:

e Databricks Intelligent Data Platform on Azure
PySpark

Python Pandas library

Python Seaborn library for data visualization
Jupyter Notebooks on Databricks

Parquet and Delta file format

https://www.kaggle.com/

Project artifacts

* \Xorking environment on Azure

e Code for data ingestion, processing, ML training, and serving and saving forecasted results to
Databricks Lakehouse in delta format

e Code for workflow and orchestration with Control-M to coordinate all the activities and tasks
and handle failure scenarios

High-level architecture and data flow

Current architecture assumes that data lands in the raw zone of the data lakehouse as a csv file with
a pre-defined schema as a batch. The high-level overview of the data flow and associated
processes is showed in Figure 2.

Architecture and Data Flow

Data Validation Data Cleaning Silver Zone

pronze Zone chees Transformation (Parquet
(CSV Format) (Schema + Sanity

Checks) (PySpark) Format)

Feature
Engineering
(PySpark)

Predictions.
Stored for Model
Offline Batch ode
. Gold Zone
(Delta Format) Inferencing Training
(Delta Format)

(PySpark) (PySpark)

Visualization

Figure 2. Overview of data flow and associated processes.

Data and feature engineering

Currently the data and ML pipelines are modeled as a batch process. Initial exploratory data analysis
(EDA) was done to understand the datasets and relevant attributes contributing to predicting the
inventory levels and POS sales. Initial EDA indicated that it is useful to transform the dates to “day of
the week"- and “time of day"- type categories for best predictive results. The data pipelines included
feature engineering capabilities for datasets that had time as part of the broader dataset.

Figure 3 shows a sample data pipeline for POS dataset. Figure 4 shows another similar data pipeline
for an inventory dataset. Post data transformation, the transformed tables were joined to form a de-
normalized table for model training. This is shown in Figure 5 for enriching the POS and the inventory

data.

POS Data Transformation

Normalize Date to a

PySpark Code

StorelD Remove Unwanted StorelD
SKU Columns
SKU
Category Remove All Rows ‘ e Generate Year, QTR,
Quantity with Null Values in Quantity Month, Day of Week
Date Essential Columns Date
U2 i Time
CSV Format Remove Duplicate Normalize Time to a Hour,
L Parquet Format TimeOfDay Format
Normalize Quanti
StorelD ol R
to Integer
SKU
Category
Quantity
Year
Month
Qtr
HourOfDay Delta Format
DayOfWeek
Figure 3. A sample data pipeline for POS dataset.
Inventory Data Transformation
Raw Zone

Spark Code m Normalize

SKU StockLevels to Integer

ProductName SKU

StockLevel Remove Unwanted ProductName

LeadTime ‘ Columns StocklLevel m

StorelD Remove All Rows LeadTime SKU

SupplierlD with Null Values in StorelD ProductName

LeadTime Essential Columns SupplierlD StockLevel

CSV Format Remove Duplicate LeadTime
Rows StorelD

SupplierlD

Delta Format

Figure 4. Sample data pipileine for inventory dataset.

Enrich POS Data

StorelD
SKU pos |
Category E N StorelD
EIETER StorelD SKU
il LocationID Category
e Address Quantity
it Details Year
HourOfDay Month
DayOfWeek Qtr
HourOfDay
Location DayOfWeck
LocationID Location
Location Region
Region State
State Zip
Zip Country
Country Delta Format

Figure 5. The joining of transformed tables to form a de-normalized table for model training.

Model training

The ML training pipeline used random forest and linear regression to predict the sales and inventory
levels. The following modules from PySpark were used to create the ML pipeline and do one-hot
encoding on the categorical variables.

e pyspark.ml.Pipeline

» pyspark.mlfeature.Stringlindexer, OneHotEncoder
e pyspark.mlfeature.VectorAssembler

* pyspark.mlfeature.StandardScaler

* pyspark.mlregression.RandomForestRegressor

* pyspark.mlevaluation.RegressionEvaluator

» pyspark.mlregression.LinearRegression

The enriched data was passed to the pipelines and the different regressor models were applied to
the data to generate the predictions.

The RegressionEvaluator module was used to evaluate the results and the median absolute error
(MAE), root mean squared error (RMSE), and R-squared metrics were generated to evaluate the
predicted results. Feature weights were used to understand the contribution weights of each of the

features to the predictions.

Orchestrating the end-to-end predictions

Data orchestration of the different PySpark notebooks uses a Databricks Workflows job while the
production orchestration is performed by Control-M using its Databricks plug-in. This approach
enables our Databricks workflow to be embedded into the larger supply chain and inventory
business workflows already managed by Control-M for a fully automated, end-to-end orchestration
of all related processing. Furthermore, it gives us access to advanced scheduling features like the
ability to manage concurrent execution of multiple Databricks workflows that may require access to
constrained shared resources such as public IP addresses in our Azure subscription.

Figure 6 shows the different orchestrated tasks to generate the offline predictions and dashboard.
The orchestration was kept simple and does not show all the error paths and error handling paths.

LoadPOS RemoveNullValuedPOSColum, RemoveDuplicateRowsPOS LinearRegressioninventoryPOS

LoadStores RemoveNullValuedStoreColu... RemoveDuplicateRowsStores LinearRegressioninventaryPre..

LoadSupplyChain RemoveNullValuedSupplyCha... RemoveDuplicateRowsSupply...

Figure 6. The different orchestrated tasks to generate the offline predictions and dashboard.

Control-M Integration with Databricks

Before creating a job in Control-M that can execute the Databricks workflow, we will need to create
a connection profile. A connection profile contains authorization credentials—such as the username,
password, and other plug-in-specific parameters—and enables you to connect to the application
server with only the connection profile name. Connection profiles can be created using the web
interface and then retrieved in json format using Control-M's Automation API. Included below is a
sample of the connection profile for Azure Databricks in json format. If you create the connection
profile directly in json before running the job, it should be deployed using the Control-M Automation

API CLI.

https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_CodeRef_ConnectionProfiles_DataProcessing.htm#Connecti3
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_CodeRef_ConnectionProfiles_DataProcessing.htm#Connecti3
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_Intro.htm
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_Intro.htm

v o
v "JOG-AZ-DATABRICKS": {

"Type": "ConnectionProfile:Azure Databricks”,

"Tenant ID": "<insert Azure Tenant”,

“Databricks Resource": "<Databricks Resource ID",
"Client Secret”: "

"Application ID":

"Azure Login url™: "h //login.microsoftonline.com"
"Databricks url": "<URL>"

"Connection Timeout": "

|

"Description”: "",
"Centralized":

Creating a Databricks job

The job in Control-M that will execute the Databricks workflow is defined in json format as follows:

{

"jog-databricks" : {

"Type" : "Folder",

"ControlmServer" : "smprod",
"OrderMethod" : "Manual",
“SiteStandard" : "jog",
"SubApplication" : "Databricks",
“CreatedBy" : "joe goldberg@bmc.com",
“Application” : "jog",
"DaysKeepActiveIfNotOk" : "1",

"When" : {

"RuleBasedCalendars" : {

"Included" : ,

"EVERYDAY" : {

"Type" : "Calendar:RuleBased",

"When" : {

"DaysRelation" : "OR",

"WeekDays" : ,

“MonthDays"

}

}

}

b

"“jog-azure-databricks-workflow" : {
“Type" : "Job:Azure Databricks",
"ConnectionProfile" : "JOG-AZ-DATABRICKS",
“Databricks Job ID" : "674653552173981",

"Parameters" : "\"params\" : {}",
"SubApplication" : "Databricks",
"Host" : "azureagents"”,
"CreatedBy" : "joe goldberg@bmc.com",
"RunAs" : "JOG-AZ-DATABRICKS",
“Application" : "jog",

"When" : {

"WeekDays" : ,

“MonthDays" : ,

"DaysRelation" : "OR"

b

"AzEastPublicIPs" : {

"Type" : "Resource:Pool",
"Quantity" : "8"

}

}
}
}

Running the Databricks workflow

To run the job we will use the run service within Automation API.

PS C:\Usersibfarugui> ctm run C:‘\users\bfarugui\Downloads‘\kWorkspace 38.json

{
“runld”:
“sratusURI": yrod. ctmdemo . com: Jautomation-api/run/status/f84balf8-8dd3-4614-bede-ad234b8be

Planning Managed File Transfer Tools ~ & Alerts

Viewpoints Services @ Viewpoint 1 * x u

Run Time Parameters

Execution Log

ob Type

Suppert group name

Log Details

Figure 7. Databricks workflow executing in the Control-M monitoring domain.

aed™

Docun

[~

https://docs.bmc.com/docs/automation-api/monthly/run-service-1116950330.html#Runservice-JobManagement

Output of completed Databricks job

Planning

Managed File Transfer

Tools ~

A Alerts

in Control-M

Viewpoints Services

o v 7/

[Navigation pane

m B serversmprod
4 W O Application: jog
4 W O sub Application: Databricks
4 W (D jog-databricks

W [2 jog-azure-databricks-workflow

@ Viewpoint 1

o n

~ @, G jogd..ricks

jog-azure-databricks-wo
rhflow

L]

jog-azure-databricks-workflow / 3>
Summary Job Settings Azure Databricks Log Script Documentati v
00001 117:00PM,, 0 ~ o &G

Find PRV

Figure 8. Output of completed Databricks job in Control-M.

Task workflow in Azure Databricks

» »

TaskWorkFlow

Error code

)

Runs Tasks
Runs
2 .
= om 2s
L]
-]
=) 4m 315
&
Librarylmports
w Loadlnwentory
2 Loadlocation
LoadPOS
LoadPr
.
Start time Run ID Launched Duration ~ Status
[7 P Manually 3mdés < Running
A Manually
Manually @) Succeeded
Manually Om s () Succended
TALOOLEETEITI N Aamainlh G 2. A Coummnmddn

Cancel runs v

Run parameters

2 @ Job details
Job ID
N Creator 2, Pal. Sumit
Run as () 2 Pal sumit &
Tags (D Add tag
Description Add description

k Git
Naot configured

Add Git settings

By Schedule

None

Add schedule

I & Compute

Job_cluster

'orkers: Standar

v - 8 workers - 13.3 LTS

Apache Spark 3.4.1, Scala 2.12)

Configure Swap

Task workflow in Azure Databricks.

Graph view of task workflow in Azure Databricks

Workflows > Jobs » TaskWorkFlow >
TaskWorkFlow run Delete job run Repair run

Graph Timeline

LoadProduc

Figure 10. Graph view of task workflow in Azure Databricks.

Outputs and visualization

Two forms of output were generated during the project.

 Predicted results from the model for POS sales and inventory predictions needed based on
demand—these were stored as Delta format files on the lakehouse for offline viewing and
analysis.

* Visualizations of the feature weights that contributed to the predictions for POS and inventory
data for both random forest and linear regression algorithms.

The four figures below show the feature weights for each of the above algorithms across the
different features for POS and inventory predictions from the feature engineered attributes.

Features

Linear Regression POS Feature Weight

DayOfweek_vec_Thu 4
DayOfWeek_vec_Mon A
DayOfweek_vec_Fri
DayOfweek_vec_Tue -
DayOfweek_vec_Sun 4
Mon_vec_Jul 4
Mon_vec_Dec -
Qtr_vec_Q1 4
Mon_vec_Feb
Year_vec_2019
Mon_vec_Aug A
DayOfweek_vec_Sat -
Mon_vec_Apr A
Category_vec_skincare 7
SKU_vec_SKU02 -
Mon_vec_Mar -
StorelD_vec_B
Region_vec_New York 4
Location_vec_New York -
State_vec_New York -
Zip_vec_10036 4
Region_vec_Philadelphia -
Location_vec_Philadelphia -
State_vec_Pennsylvania 1
Zip_vec_19103 -
StorelD_vec_C -
HourOfDay_vec_Afternoon -
Qtr_vec_Q2 1
HourOfDay_vec_Moming
Mon_vec_jan -
HourOfDay_vec_Mid Day
Category_vec_haircare -
SKU vec_SKUO1
Mon_vec_May
Qtr_vec_Q3

||III|||.......

K
|

[N]
(=]
IS

Weight

Figure 11. Linear regression POS feature weight.

Linear Regression Inventory Feature Weight

SupplierlD_vec_Supplier2 -
Costs 4

Category_vec_skincare
ProductName_vec_Dove Soap -
SupplierlD_vec_Supplierl -
StorelD_vec_B 4
Zip_vec_10036 4
State_vec_New York -

Region_vec_New York -

LocationID_vec_2

Features

SupplierlD_vec_Supplier5 -
State_vec_Massachusetts -
Zip_vec_2467 4

StorelD_vec_A

LocationlD_vec_1 -
Region_vec_Chestnut Hill -
ProductName_vec_Nivea Facecream
Category_vec_cosmetics -

ProductionvVolumes -

SupplierlD_vec_Supplierd -

[=

=20 20 40 60 80 100

Figure 12. Linear regression inventory feature weight.

Random Forest Inventory Top 20 Features by Importance

Costs

ProductionVolumes
SupplieriD_vec_Supplier2
Category_vec_skincare
ProductName_vec_Dove Soap
LocationlD_vec_2
SupplieriD_vec_Suppliers
LocationlD_vec_1
Region_vec_Chestnut Hill

Category_vec_cosmetics

Features

Region_vec_New York
SupplieriD_vec_Supplierl
SupplieriD_vec_Supplierd

ProductName_vec_Nivea Facecream
Zip_vec_2467
State_vec_Massachusetts
Zip_vec_10036

State_vec_New York

StorelD_vec_B

StorelD_vec_A

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Weight

Figure 13. Random forest inventory top 20 features by importance.

Random Forest POS Feature Top 20 by Importance

DayOfweek_vec_Sun
Mon_vec_jan
HourOfDay_vec_Mid Day
DayOfweek_vec_Sat
DayOfweek_vec_Thu
HourOfDay_vec_Afternoon
SKU_vec_S5KUD2

SKU vec_SKUO1
Category_vec_haircare
Year_vec_2019
DayOfweek_vec_Fri

Features

Mon_vec_Feb
Qtr_vec_Q2
Region_vec_Philadelphia
Mon_vec_Mar
Qtr_vec_Q1
Qtr_vec_Q3
HourOfDay_vec_Moming
DayOfWeek_vec_Mon
Zip_ver_19103
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Weight

Figure 14. Random forest POS feature top 20 by importance.

Conclusion

This blog demonstrates an ML use case for forecasting of sales and inventory. The ML workflow is
likely to be part of a larger orchestration workflow in Control-M. where it is interdependent on
workflows running in POS and inventory management applications. However, in this blog, we have
maintained the focus on the ML workflow in Databricks and its integration and execution through
Control-M.

