ORCHESTRATE ML WORKFLOWS: RETAIL FORECASTING,
INVENTORY MANAGEMENT IN POS AND SUPPLY CHAIN

Predicting point-of-sale (POS) sales across stores, coordinated with inventory and supply chain data,
is table stakes for retailers. This blog explains this use case leveraging PySpark for data and machine
learning (ML) pipelines on Databricks, orchestrated with Control-M to predict POS and forecast
inventory items. This blog has two main parts. In the first section, we will cover the details of a retail
forecasting use case and the ML pipeline defined in Azure Databricks. The second section will cover
the integration between Control-M and Databricks.

Developing the use case in Azure Databricks
Note: All of the code used in this blog is available at this github repo.

In real life, data would be ingested from sensors and mobile devices, with near-real-time inventory
measurements and POS data across stores. The data and ML pipeline is coordinated with Control-M
to integrate the different components and visualize the results in an always-updated dashboard.

The data lands in the Databricks Intelligent Data Platform and is combined, enriched, and
aggregated with PySpark Jobs. The resulting data is fed to different predictive algorithms for training
and forecasting sales and demand with the results visualized in:

e Graphical dashboards
» Written as delta files to a data repository for offline consumption


https://github.com/JoeGoldberg/retail-forecasting-with-azure-databricks

In this post, we will also walk through the architecture and the components of this predictive system.

Data set and schema

The project uses real-world data, truncated in size and width to keep things simple. A simplified and
abridged version of the schema is shown in Figure 1. The location table is a reference table, obtained
from public datasets. The color coding of the fields shows the inter-table dependencies. Data was
obtained partially from Kaggle and other public sources.
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Figure 1. Example of schema.

Platform and components

The following components are used for implementing the use case:

e Databricks Intelligent Data Platform on Azure
PySpark

Python Pandas library

Python Seaborn library for data visualization
Jupyter Notebooks on Databricks

Parquet and Delta file format


https://www.kaggle.com/

Project artifacts

* \Xorking environment on Azure

e Code for data ingestion, processing, ML training, and serving and saving forecasted results to
Databricks Lakehouse in delta format

e Code for workflow and orchestration with Control-M to coordinate all the activities and tasks
and handle failure scenarios

High-level architecture and data flow

Current architecture assumes that data lands in the raw zone of the data lakehouse as a csv file with
a pre-defined schema as a batch. The high-level overview of the data flow and associated
processes is showed in Figure 2.
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Figure 2. Overview of data flow and associated processes.

Data and feature engineering

Currently the data and ML pipelines are modeled as a batch process. Initial exploratory data analysis
(EDA) was done to understand the datasets and relevant attributes contributing to predicting the
inventory levels and POS sales. Initial EDA indicated that it is useful to transform the dates to “day of
the week"- and “time of day"- type categories for best predictive results. The data pipelines included
feature engineering capabilities for datasets that had time as part of the broader dataset.

Figure 3 shows a sample data pipeline for POS dataset. Figure 4 shows another similar data pipeline
for an inventory dataset. Post data transformation, the transformed tables were joined to form a de-
normalized table for model training. This is shown in Figure 5 for enriching the POS and the inventory



data.
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Figure 3. A sample data pipeline for POS dataset.
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Enrich POS Data
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Figure 5. The joining of transformed tables to form a de-normalized table for model training.

Model training

The ML training pipeline used random forest and linear regression to predict the sales and inventory
levels. The following modules from PySpark were used to create the ML pipeline and do one-hot
encoding on the categorical variables.

e pyspark.ml.Pipeline

» pyspark.mlfeature.Stringlindexer, OneHotEncoder
e pyspark.mlfeature.VectorAssembler

* pyspark.mlfeature.StandardScaler

* pyspark.mlregression.RandomForestRegressor

* pyspark.mlevaluation.RegressionEvaluator

» pyspark.mlregression.LinearRegression

The enriched data was passed to the pipelines and the different regressor models were applied to
the data to generate the predictions.

The RegressionEvaluator module was used to evaluate the results and the median absolute error
(MAE), root mean squared error (RMSE), and R-squared metrics were generated to evaluate the
predicted results. Feature weights were used to understand the contribution weights of each of the



features to the predictions.

Orchestrating the end-to-end predictions

Data orchestration of the different PySpark notebooks uses a Databricks Workflows job while the
production orchestration is performed by Control-M using its Databricks plug-in. This approach
enables our Databricks workflow to be embedded into the larger supply chain and inventory
business workflows already managed by Control-M for a fully automated, end-to-end orchestration
of all related processing. Furthermore, it gives us access to advanced scheduling features like the
ability to manage concurrent execution of multiple Databricks workflows that may require access to
constrained shared resources such as public IP addresses in our Azure subscription.

Figure 6 shows the different orchestrated tasks to generate the offline predictions and dashboard.
The orchestration was kept simple and does not show all the error paths and error handling paths.

LoadPOS RemoveNullValuedPOSColum, RemoveDuplicateRowsPOS LinearRegressioninventoryPOS

LoadStores RemoveNullValuedStoreColu... RemoveDuplicateRowsStores LinearRegressioninventaryPre..

LoadSupplyChain RemoveNullValuedSupplyCha... RemoveDuplicateRowsSupply...

Figure 6. The different orchestrated tasks to generate the offline predictions and dashboard.

Control-M Integration with Databricks

Before creating a job in Control-M that can execute the Databricks workflow, we will need to create
a connection profile. A connection profile contains authorization credentials—such as the username,
password, and other plug-in-specific parameters—and enables you to connect to the application
server with only the connection profile name. Connection profiles can be created using the web
interface and then retrieved in json format using Control-M's Automation API. Included below is a
sample of the connection profile for Azure Databricks in json format. If you create the connection
profile directly in json before running the job, it should be deployed using the Control-M Automation

API CLI.


https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_CodeRef_ConnectionProfiles_DataProcessing.htm#Connecti3
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_CodeRef_ConnectionProfiles_DataProcessing.htm#Connecti3
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_Intro.htm
https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_Intro.htm

v o
v "JOG-AZ-DATABRICKS": {

"Type": "ConnectionProfile:Azure Databricks”,

"Tenant ID": "<insert Azure Tenant”,

“Databricks Resource": "<Databricks Resource ID",
"Client Secret”: "

"Application ID":

"Azure Login url™: "h //login.microsoftonline.com"
"Databricks url": "<URL>"

"Connection Timeout": "

|

"Description”: "",
"Centralized":

Creating a Databricks job

The job in Control-M that will execute the Databricks workflow is defined in json format as follows:

{

"jog-databricks" : {

"Type" : "Folder",

"ControlmServer" : "smprod",
"OrderMethod" : "Manual",
“SiteStandard" : "jog",
"SubApplication" : "Databricks",
“CreatedBy" : "joe goldberg@bmc.com",
“Application” : "jog",
"DaysKeepActiveIfNotOk" : "1",

"When" : {

"RuleBasedCalendars" : {

"Included" : ,

"EVERYDAY" : {

"Type" : "Calendar:RuleBased",

"When" : {

"DaysRelation" : "OR",

"WeekDays" : ,

“MonthDays"

}

}

}

b

"“jog-azure-databricks-workflow" : {
“Type" : "Job:Azure Databricks",
"ConnectionProfile" : "JOG-AZ-DATABRICKS",
“Databricks Job ID" : "674653552173981",



"Parameters" : "\"params\" : {}",
"SubApplication" : "Databricks",
"Host" : "azureagents"”,
"CreatedBy" : "joe goldberg@bmc.com",
"RunAs" : "JOG-AZ-DATABRICKS",
“Application" : "jog",

"When" : {

"WeekDays" : ,

“MonthDays" : ,

"DaysRelation" : "OR"

b

"AzEastPublicIPs" : {

"Type" : "Resource:Pool",
"Quantity" : "8"

}

}
}
}

Running the Databricks workflow

To run the job we will use the run service within Automation API.

PS C:\Usersibfarugui> ctm run C:‘\users\bfarugui\Downloads‘\kWorkspace 38.json

{
“runld”:
“sratusURI": yrod. ctmdemo . com: Jautomation-api/run/status/f84balf8-8dd3-4614-bede-ad234b8be
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Figure 7. Databricks workflow executing in the Control-M monitoring domain.
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https://docs.bmc.com/docs/automation-api/monthly/run-service-1116950330.html#Runservice-JobManagement

Output of completed Databricks job
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Figure 8. Output of completed Databricks job in Control-M.

Task workflow in Azure Databricks
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Graph view of task workflow in Azure Databricks
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Figure 10. Graph view of task workflow in Azure Databricks.

Outputs and visualization

Two forms of output were generated during the project.

 Predicted results from the model for POS sales and inventory predictions needed based on
demand—these were stored as Delta format files on the lakehouse for offline viewing and
analysis.

* Visualizations of the feature weights that contributed to the predictions for POS and inventory
data for both random forest and linear regression algorithms.

The four figures below show the feature weights for each of the above algorithms across the
different features for POS and inventory predictions from the feature engineered attributes.
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Figure 11. Linear regression POS feature weight.



Linear Regression Inventory Feature Weight
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Figure 12. Linear regression inventory feature weight.

Random Forest Inventory Top 20 Features by Importance
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Figure 13. Random forest inventory top 20 features by importance.

Random Forest POS Feature Top 20 by Importance
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Figure 14. Random forest POS feature top 20 by importance.

Conclusion

This blog demonstrates an ML use case for forecasting of sales and inventory. The ML workflow is
likely to be part of a larger orchestration workflow in Control-M. where it is interdependent on
workflows running in POS and inventory management applications. However, in this blog, we have
maintained the focus on the ML workflow in Databricks and its integration and execution through
Control-M.



