
OBSERVABILITY VS EVENT MANAGEMENT: WHAT’S THE
DIFFERENCE?

When it comes to alerts and alarms, there is only one movie scene that comes straight to mind:
“Houston, we have a problem!” The explosion of one oxygen tank on the Apollo 13 lunar mission’s set
off a colorful array of buttons on the rocket as well as at the mission control, leading to hectic but
heroic efforts to bring the astronauts back to earth.

Similar scenes are replayed daily in IT departments globally as monitoring systems bring notice of
failed components or degraded performance. That’s why having an approach to detect such events
and alerts—and respond appropriately—is a critical capability for any service management
organization.

While event management has been a mainstay of service management for years, observability has
recently risen to prominence as the go to approach for modern tech organizations. But are they
really very different? This article breaks down the two approaches.

Observability basics
The term observability is not new but was first established under control systems engineering. Here,
observability is defined as the ability to measure the internal states of a system by examining its
outputs. When trying to understand observability, we look at it as a characteristic rather than an
activity. In other words, the more observable a system is, the better placed we are to pinpoint the
reason for things going wrong.

https://www.youtube.com/watch?v=C3J1AO9z0tA
https://blogs.bmc.com/blogs/it-monitoring/
https://blogs.bmc.com/blogs/critical-it-tech-policies/
https://blogs.bmc.com/blogs/outcomes-vs-outputs


Where monitoring refers to that activity of looking at the change of state in a system to determine if
it is working well or not, observability is more about the actual capability of the system and its
management to effectively convey the reason for the change of state. So, we can actually look at
observability from two perspectives:

The design of the system
The capability of monitoring tools

(Compare observability & monitoring.)

The design of the system
The Google Cloud Architecture Guides on DevOps indicate that systems are instrumented with code
or components that expose the inner state. A well instrumented system will aid observability as the
system itself provides quality outputs that reveal its true internal state.

For instance, during development or deployment, code is added to the software system to keep
track of connection pool information such as unused connections, failed connections etc., which can
be exposed through:

Observability & event management (OEM) tools
Scripts
A third-party monitoring solution

The capability of monitoring tools
Observability has been primarily marketed (rather ‘overhyped’) as a hallmark of modern monitoring
tools, particularly application performance monitoring (APM) solutions. These solutions include
features that can collect, analyze, and correlate eternal state data from a variety of telemetry
sources such as logs, metrics, distributed traces, and user sessions.

The use of such tools, leveraging artificial intelligence (AI) and cloud centric capabilities such as
CI/CD, provide the means of keeping up with visibility requirements for the ever-evolving landscape
of modern technology systems like:

Microservices
Containers
Serverless functions

Observability in ITSM
In the world of technology service management, observability is a critical differentiator in faster
detection and resolution of incidents and problems that would plague our applications or
infrastructure, resulting in bad customer experience as well as lost business outcomes.

According to Ubuntu, the degree of observability in a system depends on the quality of telemetry
information collected and the way it is processed, which enables one to know and investigate in a
timely fashion how the system is performing, what issues are occurring and what their impact is.

This is especially important when trying to address service quality, especially when one considers
benefits such as reduction in Mean Time to Restore Service which is a key customer experience

https://blogs.bmc.com/blogs/observability-vs-monitoring/
https://cloud.google.com/architecture/devops/devops-measurement-monitoring-and-observability
https://blogs.bmc.com/blogs/application-performance-management-in-devops/
https://blogs.bmc.com/blogs/devops-monitoring-telemetry/
https://blogs.bmc.com/blogs/devops-monitoring-telemetry/
https://blogs.bmc.com/blogs/artificial-intelligence-vs-machine-learning/
https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/incident-management/
https://ubuntu.com/observability/what-is-observability
https://blogs.bmc.com/blogs/mtbf-vs-mtff-vs-mttr-whats-difference/


indicator.

Event management overview
Event management is the practice that acts on monitored changes of state of services and their
associated components, by determining their significance, and identifying and initiating the correct
response to them.

(Read our event management explainer.)

According to the ITIL® 4 practice guide related to this topic, information about events is also
recorded, stored, and provided to relevant parties. Events materialize when a set threshold is passed
(could be a warning or an exception) which triggers a pre-defined response such as:

Creating an alert or other notification
Creating an incident
Changing a status of a previously recorded alert or notification
Initiating a reactive action towards the respective component or service

From a process perspective, the event handling process relies on inputs from system notifications
and monitoring tools outputs which are then taken through the following activities as guided by a
monitoring plan:

Event detection
Event logging (for significant events)
Event filtering and correlation check (might be iterative)
Event classification (critical, major, medium, minor)
Event response selected
Notifications sent, response procedure carried out

These activities can be manual or automated depending on the service provider organization’s
capabilities, and result in appropriate responses including event analysis, incident management and
stakeholder engagement. It is clear that event management is not simply the action of responding to
system alerts, but rather an all-encompassing capability that requires people (roles), information and
technology, processes and where required partners and suppliers for success.

(Learn about the people, process, technology & partners paradigm.)

Drawing the line between observability & event management
The evolution from ITIL v3 to ITIL 4 saw a change of name for this key practice (previously process)
from “Event Management” to “Monitoring and Event Management”. The rationale behind this
decision was informed by the fact that monitoring is a trigger for event management, but not all
monitoring results in the detection of an event.

So, can we say that observability is only related to monitoring? Not quite, as can be seen that the
value of observability spans across the design and development lifecycle of systems.

Some of the benefits of observability, as identified by IBM, include having systems that are easier to
understand, monitor, update, and repair, leading to higher quality and ultimately meeting business
and customer needs. But from the understanding of the activities of event management, it is obvious

https://blogs.bmc.com/blogs/it-event-management/
https://blogs.bmc.com/blogs/people-process-technology/
https://www.ibm.com/topics/observability


that the value of observability can only be fully achieved when a mature and improving event
management practice is in place.

Related reading
BMC Service Management Blog
BMC IT Operations Blog
BMC DevOps Bog
What is Security Information and Event Management (SIEM)?
Risk Management Practices in ITIL® 4 Environments
Monitoring Microservices with Spring Boot Actuator & AspectJ

https://blogs.bmc.com/blogs/categories/itsm/
https://blogs.bmc.com/blogs/categories/it-operations/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/siem-security-information-event-management/
https://blogs.bmc.com/blogs/monitoring-microservices-with-spring-boot-actuator-and-aspectj/

