WHAT IS A NEURAL NETWORK? AN INTRODUCTION WITH
EXAMPLES

We want to explore machine learning on a deeper level by discussing neural networks. We will do
that by explaining how you can use TensorFlow to recognize handwriting. But to do that we first
must understand what are neural networks.

We begin our discussion, based upon our knowledge of linear models, and draw some introductory
material from this book written by Michael Nielsen. It is recommended by TensorFlow.

What are neural networks?

To begin our discussion of how to use TensorFlow to work with neural networks, we first need to
discuss what neural networks are.

Think of the linear regression problem we have look at several times here before. We have the
concept of a loss function. A neural network hones in on the correct answer to a problem by
minimizing the loss function.

Suppose we have this simple linear equation: y = mx + b. This predicts some value of y given values
of x.

Predictive models are not always 100% correct. The measure of how incorrect it is is the loss. The
goal of machine learning it to take a training set to minimize the loss function. That is true with linear
regression, neural networks, and other ML algorithms.

https://blogs.bmc.com/blogs/artificial-intelligence-vs-machine-learning/
https://blogs.bmc.com/blogs/tensorflow-vs-keras/
https://neuralnetworksanddeeplearning.com/chap1.html
https://neuralnetworksanddeeplearning.com/

For example, suppose m = 2, X = 3, and b = 2. Then our predicted value of y =2 " 3 + 2 = 8. But our
actual observed value is 10. So the loss is 10 - 8 = 2.

What are perceptrons?

In a neural network, we have the same basic principle, except the inputs are binary and the outputs
are binary. The objects that do the calculations are perceptrons. They adjust themselves to
minimize the loss function until the model is very accurate. For example, we can get handwriting
analysis to be 99% accurate.

Neural networks are designed to work just like the human brain does. In the case of recognizing
handwriting or facial recognition, the brain very quickly makes some decisions. For example, in the
case of facial recognition, the brain might start with “It is female or male? Is it black or white? Is it old
or young? Is there a scar?" and so forth.

Michael Nielsen lays this out in his book like the diagram below. All of these inputs (x1, x2, x3) are fed
into a perceptron. That then makes a yes or no decision and passes it onto the next perceptron for
the next decision. This process repeats until the final perceptron. At which point we know what the
handwriting is or whose face we are looking at.

L1

o ; output

£
Let's illustrate with a small

example. This topic is complex, so we will present the first concept here and in the next post take it a
step further.

As we said, a perceptron is an object that takes binary inputs and outputs a binary output. It uses a
weighted sum and a threshold to decide whether the outcome should be yes (1) or no (0).

For example, suppose you want to go to France but only if:

X1 -> The airline ticket is less than $1,000.
e x2 -> Your girlfriend or boyfriend can go with you.

You represent this decision with this simple vector of possible inputs:
(1,0), (0,2), (1,2), and (0,0).
In the first case (1,0) the ticket is > 1,000 and your girlfriend or boyfriend cannot go with you.

You put some weight on each of these two calculations. For example, if you are on a budget and
cost is important, give it weight wi1=4. And whether your partner can go or not is not as important. So

give it a weight of w2=3.

So you have this function for Go to France:

(X1 " w1) +(x2 " w2) = (x1 " 4) + (x2 " 3) > some threshold, b, say, 4.
We move b to the other side and write:

If (x1" 4) +(x2 " 3) -4 > 0 then Go to France (i.e., perceptron says 1)-

Then feed vectors into the equation. Obviously if the ticket is > $1,000 and if your girlfriend cannot
go (0,0) then you will not make the trip, because

(0" 3)+(0 " 4) - 4is obviously < 0.
If the ticket is cheap but you are going alone then go anyway:

(17 4)+(0 " 3)-4=0 which is not bigger than 0.

Handwriting recognition with Neural Networks

Handwriting and facial recognition using neural networks does the same thing, meaning making a
series of binary decisions. This is because any image can be broken down into its smallest object,
the pixel. In the case of handwriting, like shown below, each pixel is either black (1) or white

(meaning empty, or 0).

NN =] e

oSV &R el ~al N N[N
so| N [R W] ™ — =R

SN RV S Bl
| OINIOIE 2| YN o —

M[eNcal ([L] /Od —] o] X G

rd
7
4
S
/
[]
7
vd
/

N N[/ % Q4O
SRRSO ARNRS
NN N[O o3 oy 4]

=il 5,

Graphic Source Michael Neilson.

Image Recognition with Neural Networks

Already we introduced the concept of perceptrons, which take inputs from simple linear equations
and output 1 (true) or 0 (false). They are the left-hand side of the neural network.

I
In » output

o
But as Michael Nielsen explains, in his book, perceptrons
are not suitable for tasks like image recognition because small changes to the weights and biases
product large changes to the output. After all, going to 0 to 1is a large change. It would be better to

go from, say, 0.6 to 0.65.

Suppose have a simple neural network with two input variables x1 and x2 and a bias of 3 with
weights of -2 and -3. The equation for that is:

If -2x1 + -3x2 + 3 < O then 1 (true) otherwise 0 (false).

(That's not exactly the correct way to express that in algebra, but it is close enough. The goal here is
to keep the math to a minimum to make it easier to understand. Michael's paper is difficult to
understand for those without a math background.)

Machine learning adjusts the weights and the biases until the resulting formula most accurately
calculates the correct value. Remember from the last post, that this is the same as saying that
adjusting the weights and biases reduces the loss function to its minimum. Most ML problems work
that way. For example, linear regression.

So how do we avoid the large change of going from 0 to 1, which would mess up our model? We
allow inputs and output numbers between 0 and 1 instead of just 0 or 1.

The simplest way to do that is to divide the equation into the number 1, by using a similar formula, as
that used by logistic regression. And then we adopt the convention that if the final output value of
the neural network has a threshold, say 0.5, then we can conclude that the outcome is 1.

But isn't that just a roundabout way of calculating something that results in either 0 or 1? No.
Because in a neural network there is not just the input initial values and the resulting output. In the
middle, there are intermediate steps called hidden layers. Those need not evaluate to 0 or 1.

(You can play around with a neural network to add or remove hidden layers using this online tool.)

https://neuralnetworksanddeeplearning.com/chap1.html
https://playground.tensorfl.w.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2,2&seed=0.18223&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&

O ° . 000.000 0.03 Tanh None 0 Classification

DATA FEATURES + — 3 HIDDEN LAYERS OUTPUT
Test loss 0.509
- g -

B - = = =
[} [} [}

X

|
0oEO

O O Discret
To
illustrate, let z=xaw1 + x2w2 + b be the function above. Then we create a modified perception called
a sigmoid neuron function () like this.
1
1 + expl —2)Now we state that the values of x1 and x2 in function z do not have to be integers. They

can be any value between 0 and 1, as a result of which the sigmoid neuron function & will vary
between 0 and 1.

Remember that exp,the constant e = 2.714. Raising it to a hegative power is the same as dividing it
into 1, i.e. exp(-2) = 1 / exp(2).

When the value of z is large then exp(-z) is small (close to zero). Because 1 divided by something
large is small. In that case, the sigmoid neuron function is close to 1. Conversely, when z is small then
1/(1 + exp(-2) is close to 0. But for values that are neither large nor small, 6 does not vary much.

Neural Network Training

With artificial intelligence, we train the neural network by varying the weights x1, x2, X3, .., Xxn and the
bias b. That is to say, we vary the inputs to minimize the loss function. That is no different than simple
linear regression.

Remember that the loss function is just the difference between the predicted value and the
observed value. When there is just 1 or 2 inputs that is easy. But with handwriting recognition there
are hundreds or thousands of inputs.

(For an image of 256 pixels there are 256 * 256 inputs in our neural network, it looks something like
this, except that this has been made smaller so that you can visualize it. And this network only looks
at digits and not the whole alphabet)

hidden layver

{rnn = 15 neurons)

output layer

input layer

{T Hll neuron .'i.:l

With simple linear
regression, the loss function is the distance between the observed value z and the predicted value
p, or z - p. With neural nhetworks we use something more complicated called the stochastic
gradient descent, which is not necessary to be understood.It will suffice to say that it is basically the
same thing. But finding the minimum value in some function with thousands of input variables is
hard to achieve, so the stochastic gradient descent first takes a guess and then works from there.

Michael Nielsen gives this analogy. Below is a graph of a loss function f(x,y), i.e. a function with two
inputs. If you drop a marble into that bowl then it will roll to the lowest point. The stochastic
gradient descent is an algorithm to find that point for a loss function with many input variables. (For
those who know calculus, you might say why not just take the derivative of that function and find its
minimum? The answer is that you cannot easily find the derivative for a function with thousands of
variables.)

(2]
1 -1 ,
Anyway, let's now
see how this works with handwriting recognition. Here is an image of the number “0". The neural
network looks at each pixel, and how dark the pixel is, to figure out which pixels are filled in. Then it

matches that with handwriting samples known to represent the number 0.

The MNIST training set takes handwriting samples from 250 people. This data takes the combination
of pixels of each drawing and indicates whetheritisa o, 1, 2, .., or 9.

The neural network is then trained, based on this data, i.e., it
adjusts the coefficients and bias until it most accurately determines what digit it is.

Then you plug in handwriting samples from people who are not present in the training set. This new
set of data is called the testing set, which makes it possible to read what these people have written.

Related reading

e BMC Machine Learning & Big Data Blog

e What's a Deep Neural Network? Deep Nets Explained

¢ Using TensorFlow to Create a Neural Network (with Examples)
* Anomaly Detection with Machine Learning: An Introduction

e Top Machine Learning Architectures Explained

https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/deep-neural-network/
https://blogs.bmc.com/blogs/create-neural-network-with-tensorflow/
https://blogs.bmc.com/blogs/machine-learning-anomaly-detection/
https://blogs.bmc.com/blogs/machine-learning-architecture/

