
N-TIER ARCHITECTURE: TIER 2, TIER 3, AND MULTI-TIER
EXPLAINED

When business computing began to move from the mainframe to more affordable commodity
machines, one would pick a given computer and “promote” it to server status by installing a
database engine, some sort of code interpreter plus compiler, and develop software code that
would then create the needed software tool. This meant that the user interface software (UI), the
program itself, and the database would be running on the same platform (operating system and
computer).

It was not long until the IT industry started realizing that things like distinct patching time frames
from operating system and database engine manufacturers, recurrent common incidents, or even
the need to update/upgrade components required urgent mitigation by having the processing and
database tiers physically and logically split. Thus, Tier 2 architecture solutions started to be utilized.

As the internet became popular in the 1990s, it brought with it a revolution in terms of a user
interface which was more performant and capable, but necessitated a specific web server. This
widely empowered the proliferation of Tier 3 architecture in which the UI component was
separated from the core computing and the database.

The graphic below shows how this plays out on the web:



What is N-Tier Architecture?
N-tier (or multi-tier) architecture refers to software that has its several layers rendered by distinct IT
environments (tiers) under a client-server logic. The user interface (Presentation Tier) runs in a
separate environment than the “computation” (Business Logic Tier) which in turn also runs in a
distinct environment from the database engine and instances (Data Tier).

These distinct environments (Tiers) typically involve different servers, data center networks and
often geographies.

Before moving further, it is important to clarify the difference between a “Tier” vs “Layer”. A layer is a
logic component within a software suite that accomplishes a given functionality, whereas a tier is the
logical and hardware platform where such layer runs.

Most of the time it makes sense to split the above-mentioned tiers to achieve further architecture
flexibility, synergy, security, and efficiency.

Consider Amazon.com as an example:

Amazon needs to be accessible from anywhere, anytime and on any platform (PC; Tablet;
Smartphone) so just on the Presentation Tier there are, in fact, several tiers with distinct
“flavors” (Windows, iOS, Android).
The Business Logic Tier itself comprehends not only servers distributed by several
geographies processing data, but also automated input from warehouses and logistics
components (tiers) that process data by themselves (distinct software layers) to convey
information to the Amazon Business Logic Tier (so several tiers here also).
Finally, the Data Tier is not only replicated and distributed but split as well into distinct levels of
data instances (layers) in separate servers (tiers).

An N-Tier Architecture detailed example
Let’s look at a concrete example from the automotive industry concerning logistics software that



aims to serve the manufacturer’s assembly line with split second up to date information on parts
delivery status, hence needing to be fed by data from:

The factory shop floor (assembly line) – did the parts arrive or not

3rd party parts supplier companies – were the parts produced
Logistics warehouses – did the parts leave/arrive at the warehouse
Trucks on the road – where are they, carrying which parts
Logistics “control room” – where is everyone and everything
Factory production forward planning area – which parts do we need, by when, to achieve
optimized production cycles

To accomplish this, a system is required that can:

Constantly collect information from several distinct sources (internal and external/ remote) on
the status.
Then process it and return valuable status information that would enable accurate assertive
awareness to decision makers on how progress was being achieved regarding production
forecast in a manner that those could act to mitigate any high potential noncompliance risks.
Allow the forward planning team to issue parts production orders for the following days to
comply with the establish production plan.

Below is the system architecture for the necessary software tiers:

Presentation Tier
The presentation tier must address several types of user interface protocols and platforms, in
specific:

The car manufacturer’s internal users, from both the logistics control room and production
planning areas where users could make changes to business rules and processes. This



requires a robust, secure UI (such as a desktop client application); additionally, key users on the
shop floor need to query and check-in parts as they arrive. This would run from a client service
software layer on a machine that would be physically within the manufacturer’s network and
served by the entire LAN/WAN infrastructure (assuring redundancy, added security, and
speed).

The 3rd party suppliers and logistics warehouse users reside on 3rd party entities’ IT landscapes,
and are therefore not allowed access to the manufacturer’s LAN or WAN. Therefore, the most
suitable, safe and fast solution would be to develop a web based client service software layer
resorting to a web server cluster with one machine cluster inside the manufacturer’s data
center and another one in the DMZ (where authorized providers can access via strong
authentication protocols). Both cluster nodes (internal and DMZ) should be installed in distinct
geographies to allow redundancy and high availability.
The trucks would need to be equipped with automated I/O clients that would convey the GPS
coordinates and the material’s list ID via a public mobile web data service through web servers
installed on the DMZ via two ISPs from distinct countries to assure redundancy and high
availability.
Some special users, like area managers and plant directors, would need to get alerts and
messages to access the system under a management reporting perspective via their
smartphones or tablets through centralized web servers inside the manufacturer’s network
(two geographies for redundancy assurance) as well as on the go via the ISPs.

Business Logic Tier
The business logic tier would be constituted by several tiers of application server clusters
distributed by multiple data centers in separate geographies with a production layer running on one
server and a quality/tests layer running on another server in each data center.

Data Tier
The data tier would consist of an active database server cluster with multiple nodes (servers) each
running its layer distributed by two data centers in separate geographies plus a historic data/ quick
recovery tier at yet another distinct geographic location.

This example assumes the organization is responsible for the entire infrastructure - a cloud-based
architecture with virtualized environments would provide even more flexibility, resilience and “Tiers”
as well as “Layers” to the entire solution.

Advantages of N-Tier Architecture
Scalability – having several separated components in the architecture allows easy scalability
by upgrading one or more of those individual components. As an example, if the number of
public clients grows that may require splitting the Webservice by adding new capacity to deal
with the client demand which means more Web Servers on the Presentation Tier; another
example would be an online shot that grows its product portfolio, in this case, the need to grow
will most likely be in the Data Tier.
Enhanced Security – An architecture that is distributed by several tiers allows placing those in
distinct security zones (both logic as well as geographic) in order to assure that each

https://en.wikipedia.org/wiki/DMZ_(computing)


component is protected according to its core business criticality level. In the presented
example, the web servers, although in a firewall-protected DMZ, have less need for security
coverage than the application servers or database servers where all critical core business data
is being processed or resides.
Resilience and Redundancy – Critical components can easily be split in tiers that are clustered
and geographically split to ensure failover, hence a more resilient system.
Maintenance flexibility – As with the case of scalability, having distinct tiers allows pin pointed
maintenance actions that do not produce collateral unwanted effects. This means that

maintenance scheduling has fewer dependencies from 3rd party components.
Disaster Recovery – An N-Tier Architecture allows individual components to restore in case of
partial service disruption being it severe or not, hence allowing shorter service recovery times.
In the case of robust, redundant well-distributed systems (the likes of ones supporting Google,
Amazon, PayPal, other) the restore activities are not even noted by end users’ due to the
redundancy in place.
Developer Friendly Environment – Having the several coding layers split by distinct tiers
allows developers to focus on their individual task without having to share resources or bear in
mind collateral potential impacts in each other’s tasks/ domains. This is the type of
architecture that also empowers frameworks and programming cultures like DevOps and
Agile/Lean.

Disadvantages of N-Tier Architecture
Performance – It seems a paradox that having the several components split to allow better
efficiency and performance may result in the risk of lower performance. This risk basically

pertains to 3rd party components/services. Having the architecture distributed by distinct
geographies and tiers means that the entire system becomes highly dependent on the I/O
flow. If within a closed network (a LAN/ WAN) the critical element is the entire cabling,
switching and routing infrastructure, whereas in the case of using cloud-based infrastructure
the topic additionally consists of several ISPs, who’s individual communication infrastructure
may not be synchronous in terms of performance.
Higher CAPEX and OPEX – adding components to the architecture means the need for
additional initial investment, running maintenance expenses budget as well as support
services. This is particularly of concern when not relying on cloud-based services.

How N-Tier Has Progressed into The Cloud
Over the last few decades, IT systems have become one of the pillars of our global economy and
key factors like security, high availability and flexibility have led most corporations to migrate their
core business related IT systems to an N-Tier Architecture.

So, what was the problem? OPEX and CAPEX! Multiplying the number of tiers and software layers
within a geographically distributed architecture to assure the above mentioned key factors was not
cost effective for most companies, but then … the market responded with robust cloud computing
offering.

Companies like IBM or AWS (Amazon Web Services) created large scale computing IT landscapes
and companies could now progressively migrate their IT environments to those cloud landscapes

https://blogs.bmc.com/blogs/capex-vs-opex/


while paying merely a fee which represented a small percentage of the cost of implementing and
maintaining their own N-Tier Architecture based IT environments.


