
POSTGRESQL VS MONGODB: COMPARING DATABASES

In this article, we compare MongoDB and PostgreSQL.

PostgreSQL is a traditional RDBMS (relational database management system) SQL database, like
Oracle and MySQL. PostgreSQL is free.

MongoDB is a no-schema, noSQL, JSON database. MongoDB has a free version, but they also have
hosted and enterprise paid versions. Even the free version includes free cloud monitoring hosted on
their site for your local installation.

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

PostgreSQL
Here are the basics of PostgreSQL.

A traditional RDBMS
A traditional RDBMS (relational database management system), such as PostgreSQL, has a script
schema and requires a primary key. You cannot add data to it unless the data column already exists.

The PostgreSQL shell
The PostgreSQL shell is slightly different from Oracle or MySQL. You log into it like this:

sudo su - postgres
postgres@paris2:~$ psql

https://blogs.bmc.com/blogs/sql-vs-nosql/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/

psql (9.5.21)
Type "help" for help.

postgres=#

Then you use the slash (\) to run commands that are not SQL commands.

Create a table
Here is how you create a table and schema in PostgreSQL:

create table expenses (
TransactionDate date,
PostDate date,
Description text,
Category text,
Type text,
Amount float8
);

Connect to a database
\c expenses
You are now connected to database "expenses" as user "postgres".

List tables
\dt
 List of relations
 Schema | Name | Type | Owner
--------+-------------------------+-------+----------
 public | chase | table | postgres

Run a query
The query below does aggregation.

select category, sum(amount) from chase group by category;
 category | sum
-----------------------+-------
 | 19389
 Education | -216
 Health & Wellness | -3154
 Personal | -1582
 Automotive | -33
 Shopping | -4479
 Travel | -7026

 Fees & Adjustments | -316
 Entertainment | -274
 Gas | -139
 Home | -1409
 Food & Drink | -1926
 Bills & Utilities | -3114
 Professional Services | -114
 Groceries | -1720
(15 rows)

Add data
INSERT INTO expenses(
transactiondate , postdate, description, category , type ,amount) VALUES
('10-July-2020', '10-July-2020', 'coffee shop', 'restaurants', 4.50);

MongoDB
Here are the basics of MongoDB.

A JSON database
Unlike PostgreSQL and other RDMBS, a JSON database, like MongoDB, has no schema so you can
put anything into it. Contrast that with a SQL database where you must define its structure before
you put data.

JSON looks like this:

data: {
 attribute: value
}

Or an array of JSON is like this:

data:

The MongoDB shell
To open the MongoDB shell, you just type mongo:

mongo
MongoDB shell version v3.6.17
connecting to: mongodb://127.0.0.1:27017/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("fd8960a6-d6fd-44f7-
a6c5-5257438934e3") }

Create a database
use sales
switched to db sales

Create a collection
A collection is a set of related tables.

db.createCollection("inventory")
{ "ok" : 1 }

Add a record
db.inventory.insert({product: "blue shoes", add: 2})
WriteResult({ "nInserted" : 1 })

Query
db.inventory.find({product: "blue shoes"})
{ "_id" : ObjectId("5f0808a6434f5a1831100614"), "product" : "blue shoes",
"add" : 2 }

Using JavaScript in the MongoDB shell
One very powerful feature with the MongoDB shell is it supports JavaScript. This means you can
define functions and save queries as variables.

For example, here is how you define Connecticut by drawing a square around it on a map. This
statement uses the GeoJSON geographical query features of MongoDB to do that.

var connecticut = db.address.find ({location:
 {$geoWithin:
 {$geometry: {
 type: "Polygon",
 coordinates:
 ,
 ,
 ,
 ,
]]
}}}});

Joining tables
In the 1970s, when IBM published the paper which described the SQL language and the database
that Larry Ellison later developed into Oracle, disk space and memory was expensive. So, the
adopted practice became to not repeat data, as that wasted expensive space and memory. That

practice is called database normalization.

Today, of course, storage and memory are cheap. noSQL database designers don't do normalization.
That simplifies things somewhat as they don't require foreign keys and all the other design elements
that create relations between tables. But it also creates its own set of problems. (For example, SQL
databases are still better suited than noSQL databases for transactional systems like accounting
because it's easier to maintain what is called referential integrity—but that is a whole other topic.)

When data is kept in two tables and you want to bring it together temporarily in a read-only
structure such as to create a report you execute what is called a join. This makes the intersection of
two sets.

It works like this:

select sales.productName, product.productName from sales, product where
product = upcCode;

The downside is this takes a lot of computing power, memory, and storage to run on a large
distributed database.

MongoDB has indices but no joins
MongoDB does not encourage or really allow joins. Instead you would put related documents
(records) inside one another so as to have them all in one place. This is kind of awkward for
something like a sales system as you would have something like this:

{ product : "shoes",
 sales:
}

That's awkward to maintain in a transactional system but would work well for other types of
systems.

Yet, while MongoDB does not support joins, it does allow indexes, which is a necessary feature of
joins. This speeds up queries.

Additional resources
So that is a side-by-side comparison of the two databases. To learn more about this topic, browse
the BMC Big Data & Machine Learning Blog and these resources:

MongoDB Guide, with 10+ articles and tutorials, including:
How to Set Up a Cluster in MongoDB
Index management in MongoDB
MongoDB vs Cassandra: NoSQL Databases Compared

Using Tableau with PostgreSQL
DBMS: An Intro to Database Management Systems
Enabling the Citizen Data Scientists

https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://blogs.bmc.com/blogs/how-to-setup-mongodb-cluster/
https://blogs.bmc.com/blogs/mongodb-sharding-explained/
https://blogs.bmc.com/blogs/mongodb-vs-cassandra/
https://blogs.bmc.com/blogs/using-tableau-postgresql/
https://blogs.bmc.com/blogs/dbms-database-management-systems/
https://blogs.bmc.com/blogs/citizen-data-scientist/

