
HOW TO USE MONGODUMP FOR MONGODB BACKUPS

Maintaining backups is vital for every organization. Data backups act as a safety measure where data
can be recovered or restored in case of an emergency. Typically, you create database backups by
replicating the database, using either:

Built-in tools
Specialized external backup services

Backing Up MongoDB
MongoDB offers multiple inbuilt backup options depending on the MongoDB deployment method
you use. We’ll look briefly at the options, but then we’ll show you how to utilize one particular
option—MongoDB mongodump—for the backup process.

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

Built-in backups in MongoDB
Here are the several options you have for backing up your data in MongoDB:

https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/

MongoDB Atlas Backups
If MongoDB is hosted in MongoDB Atlas cloud database service, the Altas service provides
automated continuous incremental backups.

Additionally, Altas can be used to create cloud provider snapshots, where local database snapshots
are created using the underlying cloud providers’ snapshot functionality.

MongoDB Cloud Manager or Ops Manager
Cloud Manager is a hosted backup, monitoring, and automation service for MongoDB. Cloud
Manager enables easy backup and restores functionality while providing offsite backups.

Ops Manager provides the same functionality as Cloud Manager but it can be deployed as an on-
premise solution.

MongoDB mongodump
Mongodump database backup is a simple MongoDB backup utility that creates high fidelity BSON
files from an underlying database. These files can be restored using the mongorestore utility.

Mongodump is an ideal backup solution for small MongoDB instances due to its ease of use and
portability.

https://blogs.bmc.com/blogs/mongodb-atlas/

File system backups
In this method, you merely keep copies of the underlying data files of a MongoDB installation. We
can utilize snapshots if the file system supports it.

Another way is to use a tool like rsync where we can directly copy the data files to a backup
directory.

What is MongoDB mongodump?
The mongodump is a utility for creating database backups. The utility can be used for creating
binary export of the database contents. Mongodump can export data from both mongod and
mongos instances, allowing you to create backups from:

A standalone, replica set
A sharded cluster of MongoDB deployments

Before MongoDB 4.4, mongodump was released alongside the MongoDB server and used matched
versioning. The new iterations of mongodump are released as a separate utility in MongoDB
Database Tools. Mongodump guarantees compatibility with MongoDB 4.4, 4.2, 4.0, and 3.6.

The mongodump utility is supported on most x86_64 platforms and some of ARM64, PPC64LE, and
s390x platforms. You can find the full list of platforms that mongodump is compatible with from their
documentation.

Mongodump actions & limitations within MongoDB
The following list breaks down the expected behaviors and limitations of the mongodump utility.

The mongodump utility directs its read operations to the primary member of a replica set,
making the default read preference to primary.
The backup operation will exclude the “local” database and only captures the documents
excluding the index data. These indexes must be rebuilt after a restoration process.
When it comes to backing up read-only views, mongodump only captures metadata of views.
If you want to capture documents within a view, use the “–viewsAsCollections” flag.
To ensure maximum compatibility, use Extended JSON v2.0 (Canonical) for mongodump
metadata files. It is recommended to use the corresponding versions of mongodump and
mongorestore in backup and restore operations.
The mongodump command will overwrite the existing files within the given backup folder. The
default location for backups is the dump/ folder.
When the WiredTiger storage engine is used in a MongoDB instance, the output will be
uncompressed data.
Backup operations using mongodump is dependent on the available system memory. If the
data set is larger than the system memory, the mongodump utility will push the working set
out of memory.
If access control is configured to access the MongoDB database, users must have enough
privileges to each database to make backups. MongoDB has a built-in backup role with
required privileges to backup any database.
MongoDB allows mongodump to be a part of the backup strategy for standalone or a replica
set.

https://rsync.samba.org/
https://docs.mongodb.com/database-tools/mongodump/#compatibility
https://docs.mongodb.com/manual/core/views/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/core/wiredtiger
https://blogs.bmc.com/blogs/mongodb-memory-usage-and-management/
https://blogs.bmc.com/blogs/identity-access-management/

Starting with MongoDB 4.2, mongodump cannot be used as a part of the backup strategy when
backing up sharded clusters that have sharded transactions in progress. In these instances, it is
recommended to use a solution like MongoDB Cloud Manager or Ops Manager, which
maintain the atomicity in transactions across shards.
The mongodump command must be executed from the system command shell as it is a
separate utility.
There is no option for incremental backups. All backups will make a full copy of the database.

MongoDB Database Tools
MongoDB Database Tools are a collection of command-line utilities that help with the maintenance
and administration of a MongoDB instance. The MongoDB Database tools are compatible in these
environments:

Windows
Linux
macOS

In this section, we will take a look at how we can install the Database Tools on a Linux server.

Checking for Database Tools
To check if the database tools are already installed on the system, we can use the following
command.

sudo dpkg -l mongodb-database-tools

Result for Database Tools installed:

Result for
Database Tools unavailable:

Installing Database Tools
If your system doesn’t have Database Tools, here’s how to install it.

The MongoDB download center provides the latest version of MongoDB Database Tools. Download
the latest version according to your platform and package type. In a CLI environment, we can copy
the download link and use wget or curl to download the package.

In the example below, we will be using the Database Tools version 100.2.1 for Ubuntu as a deb

https://blogs.bmc.com/blogs/mongodb-sharding-explained/
https://blogs.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
https://www.mongodb.com/try/download/database-tools?tck=docs_databasetools

package and then install using the downloaded file.

curl -o mongodb-database-tools-ubuntu2004-x86_64-100.2.1.deb
https://fastdl.mongodb.org/tools/db/mongodb-database-tools-ubuntu2004-x86_64-
100.2.1.deb
sudo apt install ./mongodb-database-tools-ubuntu2004-x86_64-100.2.1.deb

Result:

Using MongoDB mongodump
In this section, we will cover the basic usage of mongodump utility in a standalone MongoDB
instance.

Basic mongodump Syntax
mongodump <options> <connection-string>

The most basic method to create a backup is to use the mongodump command without any
options. This will assume the database is located in localhost (127.0.0.1) and using port 27017 with no
authentication requirements. The backup process will create a dump folder in the current directory.

mongodump

Result:

We can navigate to the dump folder to verify the created backups.

Backing up a remote MongoDB instance
We can specify a host and a port using the –uri connection string.

Connect using the uri option:

mongodump --uri="mongodb://<host URL/IP>:<Port>"

Connect using the host option:

mongodump --host="<host URL/IP>:<Port>"

Connect using host and port options:

mongodump --host="<host URL/IP>" --port=<Port>

The following example demonstrates how to create a backup of the remote MongoDB instance:

mongodump --host="10.10.10.59" --port=27017

Result:

Backing up a secure MongoDB instance
If we want to connect to a MongoDB instance with access-control, we need to provide:

Username
Password
Authentication database options

Authentication Syntax

mongodump --authenticationDatabase=<Database> -u=<Username> -p=<Password>

Selecting a collection:

mongodump --db=<Backup Target - Database> --collection=<Collection Name>

Excluding a collection:

mongodump --db=<Backup Target - Database> --excludeCollection=<Collection
Name>

In the following example, we define the “vehicleinformation” collection as the only backup target.

mongodump --host=10.10.10.59 --port=27017 --authenticationDatabase="admin" -
u="barryadmin" -p="testpassword" --db=vehicles --
collection=vehicleinformation

Result:

Changing the backup directory
The –out option can be used to specify the location of the backup folder.

mongodump --out=<Directory Location>

Let us change the backup directory to the “dbbackup” folder.

mongodump --host=10.10.10.59 --port=27017 --authenticationDatabase="admin" -
u="barryadmin" -p="testpassword" --out=dbbackup

Result:

Creating an archive file
The mongodump utility allows us to create an archive file. The –archive option can be used to
specify the file. If no file is specified the output will be written to standard output (stdout).

The –archive option cannot be used in conjunction with the –out option.

mongodump --archive=<file>

The below example demonstrates how we can define an archive file.

mongodump --host=10.10.10.59 --port=27017 --authenticationDatabase="admin" -
u="barryadmin" -p="testpassword" --archive=db.archive

Result:

Compressing the backup
The backup files can be compressed using the –gzip option. This option will compress the individual
JSON and BSON files.

mongodump --gzip

Let’s compress the complete MongoDB database.

mongodump --host=10.10.10.59 --port=27017 --authenticationDatabase="admin" -
u="barryadmin" -p="testpassword" --gzip

Result:

In this article, we covered the essential steps for using MongoDB's mongodump to create and
manage database backups. By following the instructions provided, you now have the tools to
efficiently handle your mongodump database backup needs.

