
HOW TO RUN MONGODB AS A DOCKER CONTAINER

MongoDB is among the most popular NoSQL databases today. And containers offer easy app usage
and scalability. In this article, I’ll show you how to:

Configure MongoDB as a container in Docker
Set up the Docker platform with docker-compose
Create a docker-compose file to create the MongoDB container
And more

The last part of this tutorial will look at advanced configurations. These can give you a glimpse of the
extensibility of a containerized project. So, we’ll create a self-containing project with a MongoDB
instance and Mongo Express web interface on a dedicated network and docker volume to maximize
the portability of the project.

Let’s get started.

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

Docker containers & MongoDB
Docker is a tool to create, deploy, and run applications using containers easily. A container is a
standard unit of software that can be used to package applications and all the dependencies to a
single package. These containers can be run on any server platform regardless of the underlying
configuration or hardware structure.

Docker can be used to run MongoDB instances. Setting up MongoDB as a container allows the user
to create a portable and extensible NoSQL database. A containerized MongoDB instance behaves

https://blogs.bmc.com/blogs/sql-vs-nosql/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://blogs.bmc.com/blogs/docker-101-introduction/
https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/

exactly like a non-containerized MongoDB instance without having to worry about the underlying
configuration.

Interested in Enterprise DevOps? Learn more about DevOps Solutions and Tools with BMC. ›

Installing Docker
In this section, we’ll set up a simple Docker installation to run containers on a Ubuntu-based server.
We can get the Docker installation packages from the official Docker repository. Here are the
installation steps:

Update existing packages.1.

sudo apt update && sudo apt upgrade -y

Install prerequisite packages.2.

sudo apt install apt-transport-https ca-certificates curl software-
properties-common

Add the GPG key from the official Docker repository.3.

https://blogs.bmc.com/it-solutions/devops.html
https://docs.docker.com/docker-hub/repos/

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Add the official docker repository to APT sources.4.

sudo add-apt-repository
"deb https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Update the Ubuntu package list.5.

sudo apt update

Verify the docker repository.6.

apt-cache policy docker-ce

Install the Docker community edition.7.

sudo apt install docker-ce

Check the status of the installation with the following command. If the service status returns8.
active (running), Docker is successfully installed and active on the system.

sudo systemctl status docker

Installing Docker Compose
We can use the command line interface (CLI) to create and manage Docker containers. However,
the CLI can be tedious when dealing with multiple containers and configurations.

Docker Compose allows users to take multiple containers and integrate them into a single
application. Docker Compose uses the YAML format to create the compose files that can be easily
executed using docker-compose up or down commands that will create or remove all the
containers and configurations within a compose file, respectively.

Let’s install Docker Compose on the Ubuntu server.

Install the current stable release of Docker Compose.1.

sudo curl -L

"https://github.com/docker/compose/releases/download/1.27.4/docker-compose-$(
uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

Apply executable permissions for the downloaded binary.2.

>sudo chmod +x /usr/local/bin/docker-compose

Verify the Docker Compose installation.3.

docker-compose --version

Setting up a MongoDB container
This section will cover how to set up a MongoDB container using a Docker Compose file.

Before creating the compose file, let’s search for the official MongoDB container image using the
search command.

sudo docker search mongodb

The search results show us that an official MongoDB container image called mongo exists in the
docker container registry.

By default, the MongoDB container stores the databases within the /data/db directory within the
container.

Next, we need to create a directory called “mongodb” to hold the docker-compose file. We will
create another directory called “database” inside the “mongodb” directory to map to the database
location of the container. This will enable local access to the database. We use the -pv operator to
create those parent folders.

>mkdir -pv mongodb/database

The following docker-compose.yml file will be created within the “mongodb” directory to construct

the MongoDB container.

docker-compose.yml

version: "3.8"
services:
mongodb:
image : mongo
container_name: mongodb
environment:
- PUID=1000
- PGID=1000
volumes:
- /home/barry/mongodb/database:/data/db
ports:
- 27017:27017
restart: unless-stopped

We used version 3.8 to create the above compose file. The compose file version directly correlates
to:

Which options are available within the compose file
The minimum supported Docker engine version

In this case, It’s Docker Engine 19.03.0 or newer.

In the compose file, we have created a service called mongodb using the Docker image mongo. We
have named the container “mongodb” and mapped the database folder within the container to the
local database folder (/home/barry/mongodb/database). These kinds of mappings are known as
bind-mount volumes.

The environment variables are used to define the “user” and “group” of the container. Finally, we
mapped the local port 27017 to internal port 27017. Then the restart policy is set to restart unless
stopped by the user.

Here’s the file structure of the project:

tree mongodb

Go to the
“mongodb” folder and run the docker-compose up command to start the MongoDB container. The -
d operator runs the detached container as a background process.

sudo docker-compose up -d

The up command will pull the mongo image from the docker registry and create the container using
the given parameters in the docker-compose.yml file.

Let’s verify if the container is running and the local folder is populated with the following commands.
The -a operator will display all the containers within the system regardless of their status.

sudo docker ps -a

sudo tree mongodb

Interacting with the MongoDB container
Using the docker exec command, we can access the terminal of the MongoDB container. As the
container runs in a detached mode, we will use the Docker interactive terminal to establish the
connection.

sudo docker exec -it mongodb bash

In the bash terminal of the container, we call the mongo command to access MongoDB. We will
create a database called “food” and a collection called “fruits”, along with three documents.

Switch the database.1.

use food

Create collection.2.

db.createCollection("fruits")

Insert documents3.

db.fruits.insertMany()

Se
arch for the documents using the find command:

db.fruits.find().pretty()

The MongoDB container will act like any normal MongoDB installation without any concerns about
the underlying software and hardware configuration. Using the exit command, we can exit both the
MongoDB shell and container shell.

External connections to MongoDB container
While creating the MongoDB container, we mapped the internal MongoDB port to the

corresponding port in the server, exposing the MongoDB container to external networks.

The following example demonstrates how we can connect to the container from an external
endpoint by simply pointing the mongo command to the appropriate server and port.

mongo 10.10.10.60:27017

The find command will search for the fruits collection and its documents to verify that we are
connected to the MongoDB container.

show databases
use food
show collections
db.fruits.find().pretty()

Data resilience
We’ve mapped the database to a local folder. As a result of that, even if the container is removed,
the saved data in the local folder can be used to recreate a new MongoDB container.

Let’s test that. We’ll:

Remove the container using the docker-compose down
Delete the associated images.
Recreate a new MongoDB database using the compose file and local database files.

Remove the MongoDB container.

sudo docker-compose down

Remove the local mongo image.

sudo docker rmi mongo

Verify the local database files.

From the output below, we can identify that even though we removed the containers, the data
mapped to a local directory did not get removed.

sudo tree mongodb

Recreate a new MongoDB container. Now, we will recreate the container using the original docker-
compose.yml file. We execute the following command in the mongodb folder.

sudo docker-compose up -d

Verify the Data in the MongoDB container. Let’s now access the bash shell in the container and
check for the “fruits” collections.

sudo docker exec -it mongodb bash

show databases
use food
db.fruits.find().pretty()

The result indicates that the new container was created with the local database information
associated with the new container.

Additionally, we can simply move the container by moving the local folder structure to a new server
and creating a container using the docker-compose.yml file. Docker volumes can be used instead of
locally saving the data to increase the portability of the database.

Take IT Service Management to the next level with BMC Helix ITSM.›

Container log files
Every container creates logs that can be used to monitor and debug itself. We can access the
container logs using the docker logs command with the container name to be monitored.

sudo docker logs mongodb

https://blogs.bmc.com/it-solutions/bmc-helix-itsm.html

Advanced container usage
In this section, we will create a secure MongoDB container that requires a username and password
to access the database.

In earlier examples, we mapped the database data to a local folder. However, this is tedious and
requires manual intervention when moving the Docker container. Using Docker volumes, we can
create Docker native persistent volumes that can be easily transferred between Docker installations.

Although we can use the CLI to manipulate the MongoDB instance, a GUI would be a more
convenient option to do that. Mongo Express is a web-based MongoDB administration interface that
also can be run as a containerized application.

The docker-compose file comes in handy as a single YAML file that captures all the requirements.

docker-compose.yml

version: "3.8"
services:
mongodb:
image: mongo
container_name: mongodb
environment:
- MONGO_INITDB_ROOT_USERNAME=root
- MONGO_INITDB_ROOT_PASSWORD=pass12345
volumes:
- mongodb-data:/data/db
networks:
- mongodb_network
ports:
- 27017:27017
healthcheck:
test: echo 'db.runCommand("ping").ok' | mongo 10.10.10.60:27017/test --quiet
interval: 30s
timeout: 10s

retries: 3
restart: unless-stopped
mongo-express:
image: mongo-express
container_name: mongo-express
environment:
- ME_CONFIG_MONGODB_SERVER=mongodb
- ME_CONFIG_MONGODB_ENABLE_ADMIN=true
- ME_CONFIG_MONGODB_ADMINUSERNAME=root
- ME_CONFIG_MONGODB_ADMINPASSWORD=pass12345
- ME_CONFIG_BASICAUTH_USERNAME=admin
- ME_CONFIG_BASICAUTH_PASSWORD=admin123
volumes:
- mongodb-data
depends_on:
- mongodb
networks:
- mongodb_network
ports:
- 8081:8081
healthcheck:
test: wget --quiet --tries=3 --spider http://admin:admin123@10.10.10.60:8081
|| exit 1
interval: 30s
timeout: 10s
retries: 3
restart: unless-stopped
volumes:
mongodb-data:
name: mongodb-data
networks:
mongodb_network:
name: mongodb_network

Now, let’s break down the compose file given above. First, we have created two services:

mongodb
mongo-express

mongodb service
The root username and password of the mongodb container are configured using the following
environment variables.

MONGO_INITDB_ROOT_USERNAME
MONGO_INITDB_ROOT_PASSWORD

The data volume is mapped to mongodb-data docker volume, and the network is defined as
mongodb_network while opening port 27017.

mongo-express service
The environment variables of the mongo-express container are:

ME_CONFIG_MONGODB_SERVER - MongoDB service (mongodb)
ME_CONFIG_MONGODB_ENABLE_ADMIN - Enable access to all databases as admin
ME_CONFIG_MONGODB_ADMINUSERNAME - Admin username of the MongoDB database
ME_CONFIG_MONGODB_ADMINPASSWORD - Admin password of the MongoDB database
ME_CONFIG_BASICAUTH_USERNAME - Mongo-Express web interface access username
ME_CONFIG_BASICAUTH_PASSWORD - Mongo-Express web interface access password

Additionally, we have configured the mongo-express service to depend on the mongodb service.
The network is assigned the same mongodb_network, and the volumes are mapped to mongodb-
data volume. Then the port 8081 is exposed to allow access to the web interface.

Both services are monitored using Docker health checks. The mongodb service will ping the
MongoDB database, while the mongo-express service will try to access the web page using the
given credentials.

Finally, we have defined a volume called mongodb-data and a network called mongodb_network
for the project.

Start the Docker compose file.

sudo docker-compose up -d

The above output contains no errors. So, we can assume that all the services are created

successfully. As we have added health checks for both services, we can verify it by using the docker
ps command.

sudo docker ps -a

The docker ps command prints the health status of the container. This health status is only available
if you have defined a health check for the container.

Mongo Express
Now, let’s go to the Mongo Express web interface using the server IP (http://10.10.10.60:8081).

The Mongo Express interface provides a convenient way to interact with the MongoDB database.
The Mongo Express interface also provides an overview status of the MongoDB server instance,
providing a simple monitoring functionality.

That concludes this tutorial.

Related reading
BMC Machine Learning & Big Data Blog
MongoDB vs Cassandra: NoSQL Databases Compared, part of our MongoDB Guide
Docker Commands: A Cheat Sheet
How To Introduce Docker Containers in Enterprise
State of Containers: A Report Summary

https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/mongodb-vs-cassandra/
https://blogs.bmc.com/blogs/docker-commands/
https://blogs.bmc.com/blogs/3-steps-to-introduce-docker-containers-in-enterprise/
https://blogs.bmc.com/blogs/state-of-containers/

