
TOP MONGODB COMMANDS YOU NEED TO KNOW

This article discusses the most useful commands for MongoDB database administration.

We’ll first get familiar with the basic concepts of MongoDB. Then, I’ll show you how to carry out a
variety of basic administrative functions, with commands for:

Connecting
Viewing databases, collections, roles & users
Managing users
Checking logs
Managing the database
Gathering collection details
Renaming collections
Terminating an instance

Let’s get started!

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

MongoDB overview
MongoDB is a high performance, highly scalable cross-platform NoSQL database. MongoDB relies
on concepts like Documents, Collections, and Databases:

Collections and documents are analogous to the traditional table and rows in an RDBMS
database.
A single MongoDB instance can contain multiple databases. The database is a physical

https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://blogs.bmc.com/blogs/sql-vs-nosql/

container for collections with a dedicated file structure in the system.

A Collection contains a group of MongoDB documents. Collections are created within a database
and do not enforce a schema like a traditional database. Therefore different documents in the same
collection can have different fields. MongoDB Documents are based on key-value pairs.

Let’s take a quick look at how traditional RDBMS terminology relates to MongoDB structure.

Relational Database Management
System

MongoDB

Database Database

Table Collection

Row BSON document

Column BSON field

Index Index

Primary key
_id field (Primary key)
By default, MongoDB auto-generates a 12-byte hexadecimal
number for each document.

Group Aggregation

Join Embedding and linking

Like any database, MongoDB needs administration. That’s where administrative commands come
in—let’s take a look.

Commands for connecting to MongoDB
First, we need to know how to connect to a MongoDB database. You can use the mongo command
to connect with a MongoDB database and use parameters like host and port if needed.

mongo Run this command in the localhost shell to connect to the local database on the
default port 27017.
mongo <host>/<database> Specify the host and database as parameters to connect to a
specific database.
mongo –host <hostname/IP> –port <port no> You can use this format to specify different
options while connecting the database. Refer to the mongo man pages or help for details
information about all available options.

mongo --host 10.10.10.59 --port 27017 --verbose

mongo –host <hostname/IP> –port <port no> --authenticationDatabase <database> -u <user> -p
<password>

If authentication is enabled in the MongoDB installation, we can specify the user details and the
authentication database. The authentication database is where the user details reside, which can be
any database that is used to create users. If you don’t give the password in the command, cmd will
ask for it later.

mongo --port 27017 --authenticationDatabase "admin" -u "barryadmin" -p

MongoDB show command
Let us see how to view objects in a MongoDB database. You can get the existing databases,
collections, roles, and users with the show command.

View all databases
show dbs

View collections inside a database
show collections / db.getCollectionNames()

View roles in a database
show roles

View users in a database
show users / db.getUsers()

User management commands
One of the most important administrative tasks is to manage permission for users. MongoDB
provides this functionality using users and roles, and it has built-in roles for easy access controls.

You have to enable the “authentication” option in the MongoDB config file to use the access control
feature. Add the following lines in mongod.conf file and restart the MongoDB service to reflect the
changes.

/etc/mongod.conf

security:
authorization: "enabled"

Creating a user
The createUser command allows us to create users. Let’s create a user for the vehicles database
with only read and write permissions.

Syntax:

db.createUser(
{
user: <username>,
pwd: <passwordPrompt() / Clear Text Password>,
roles:

}
)

Example:

use vehicles
db.createUser(
{
user: "barryvehicles",
pwd: passwordPrompt(),
roles:
}
)

Result:

The passwordPromt()
function will ask for the password when running the createUser command. The user is created in
the “vehicles” database.

So, when we authenticate using this user, we must specify the “vehicles” database as the
“authenticationDatabase”. A database user can be created in any database while defining
permissions for other databases.

mongo --port 27017 --authenticationDatabase "vehicles" -u "barryvehicles" -p

Result:

Updating user details
We can update the details of the user using the updateUser() command. When updating user roles,
we need to specify all the desired roles—because updateUser()will overwrite any existing rules.

In this example, we will update the “barryvehicles” user with a custom field and give read permission
to the admin database. The “customData” section allows us to create any custom key pair. This has
no effect on user roles; custom fields can be considered more of an informative section where we
can add additional details for the user.

Syntax:

db.updateUser(
<"username">,
{
customData : { <custom fields> },
roles:
}
)

Example:

db.updateUser(
"barryvehicles",
{
customData : { usertype: 'dbadmin' },
roles:
}
)

Result:

Deleting a user
We can delete a user using the dropUser() command. In the following example, we will delete the
user “barryvehicles”.

Syntax:

db.dropUser(<username>)

Example:

>db.dropUser("barryvehicles")

Result:

Checking logs
We have two methods for checking logs in MongoDB. We can:

Check the mongod log file
Use the getLog() command

getLog() returns the most recent logged events. This command will read the recent 1024 MongoDB
log events in the RAM cache. In earlier versions of MongoDB, logs were returned in plaintext format.
However, in MongoDB 4.4, the logs are formatted in Extended JSON v2.0.

Syntax:

db.adminCommand({ getLog: <value> })

There are three possible values for the getLog() command. Those are

* returns the list of available values for getLog() command.
global returns all the recent log entries.
startupWarnings returns log entries that may contain errors or warnings since the start of the
current process.

Example:

db.adminCommand({ getLog: "*" })
db.adminCommand({ getLog : "global" })

Result:

https://docs.mongodb.com/manual/reference/mongodb-extended-json/

Database management commands
In this section, we will cover basic database management commands. These can help determine the
server stats, collection stats, collection size, etc.

Help
help is an essential command in any administrator’s toolbox. The help command will give you a list
of help options available in MongoDB.

Normal help:

help

Result:

Here, you can see all the help options available in MongoDB. If you want to get all the help
commands needed to work with databases, execute the db.help() command.

db.help()

Result:

Get database details
The stats() command provides statistics of the database. The information provided ranges from the
number of collections and objects (documents), database sizes to indexes.

The scaleFactor reflects how data sizes are represented. The default scaleFactor is set to 1, which
shows data in bytes. For example, we can change the scaleFactor to 1024 to show the sizes in
kilobytes.

db.stats()

Result:

If you
want to get the server details, use the db.serverStats() command.

db.serverStats()

Result:

To
get a list of connection names, use getCollectionNames() command.

db.getCollectionNames()

Result:

Obtaining and returning collection details
Get collection statistics
The status() function will provide a comprehensive overview of the collection.

db.vehicledetails.stats()

Result:

Get collection latency
Use the latencyStatus() command to obtain the average latency of the read, write operations and
the number of read and write operations.

db.vehicledetails.latencyStats()

Result:

Get collection sizes
The following commands are used to find out the sizes of Collections in various ways:

dataSize() shows the size of data within the collection.
storageSize() indicates the total amount of storage allocated to the documents in the
collection.
totalSize() indicates the total size of the collection, including documents and the indexes.
totalIndexSize() provides the indexed size of the collection.

db.vehicledetails.dataSize()
db.vehicledetails.storageSize()
db.vehicledetails.totalSize()
db.vehicledetails.totalIndexSize()

Result:

Because the
“vehicledetails” is a small collection, the storageSize is equal to totalIndexSize as the indexed data
is equal to the raw data in the collection, and further compression is unfeasible.

Renaming collections
We can rename an existing collection with the renameCollection function. (This function is not
compatible with sharded collections.)

When renaming a collection, we need to specify the source namespace and the destination
namespace correctly. In MongoDB, namespace relates to the unique name in which we can identify
database objects.

In the below example, we are renaming the “vehicledetails” collection in the vehicle database. We
have defined the namespaces as <database>.<collectionname> to differentiate between the old and
new collections.

db.adminCommand({ renameCollection: "vehicles.vehicledetails", to:
"vehicles.vehicleinformation" })

Result:

Terminating the server
If we want to completely terminate the MongoDB instance, we can use the built-in
shutdownServer() command. shutdownServer() will clean up all the resources used by databases
before terminating the MongoDB process.

The command must be issued against the admin database to be executed. We can achieve this by
using the getSiblingDB function to indicate the admin database.

Syntax:

https://blogs.bmc.com/blogs/mongodb-sharding-explained/

db.shutdownServer({
force: <boolean>,
timeoutSecs: <int>
})

The force option forces a shutdown operation and interrupts any ongoing operations to terminate
the MongoDB instance. The timeoutSec option can be used to set the time in seconds before a
shutdown occurs. In an authenticated environment, the user must have the shutdown privilege to
run this command.

In the following example, we will force a shutdown of the MongoDB instance in 10 seconds. The
getSiblingDB function allows us to point the shutdown function to the admin database.

db.getSiblingDB("admin").shutdownServer({ "force": true, "timeoutSecs": 10 })

Result:

That concludes this MongoDB commands tutorial. All the above-mentioned commands can be
further explored using the official MongoDB documentation.

Related reading
BMC Machine Learning & Big Data Blog
MongoDB Guide, a series of articles and tutorials
MongoDB: The Mongo Shell & Basic Commands
Snowflake Guide
Data Storage Explained: Data Lake vs Warehouse vs Database

https://docs.mongodb.com/manual/reference/command/
https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/
https://blogs.bmc.com/blogs/mongo-shell-basic-commands/
https://blogs.bmc.com/blogs/import-data-s3-snowflake/
https://blogs.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/

