
MICROSERVICES VS MINISERVICES: CHOOSING THE RIGHT
FRAMEWORK

The homogenous nature of a monolithic architecture has both strengths and challenges:

Because monolithic applications have all business services and functions, including their
supporting databases, deployed as a single platform, software development and deployment
are relatively faster and easier.
Debugging is also more straightforward because you can open up the entire project within a
single IDE instance.

However, with those benefits, monoliths are complex to maintain, refactor, and scale.

Over the years, several architectural patterns evolved out of monoliths, aiming to address these
challenges by separating business functions into individually deployable services. Two such evolved
patterns are the microservices and miniservices architectures.

This article compares these two architectures and the benefits they offer as alternatives to a
monolith.

https://blogs.bmc.com/blogs/microservices-architecture/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/code-refactoring-explained/


Microservices architecture
A microservices architecture follows a development approach that designs software applications as
a set of loosely coupled, independently deployable services with distinct interfaces. These individual
functional modules perform specifically defined, separate tasks autonomously.

Characteristics of a microservice architecture
A microservice-based framework is a collection of autonomous microservices designed around
specific business capabilities. Essentially these services are miniature applications that function
collectively to support the main application.

Essential attributes of a microservices design requires:

Each microservice contains one, and only one, responsibility, which is built around a
particular business function such as sending emails, raising alerts, assigning tickets, etc.
Every microservice has its own database that does not share data storage with other services.
All services are developed, deployed, maintained, and run independently of other
microservices. Thus, each microservice has its own codebase and deployment environments.
Microservices are loosely coupled, i.e., you can change one microservice without
updating/impacting others.
All microservices communicate with each other via an event-driven communication that
runs a Publisher-Subscriber pattern.

(Explore 15 best practices for microservices.)

https://blogs.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/
https://blogs.bmc.com/blogs/microservices-best-practices/


Benefits of using microservices
Adopting a microservice architecture brings a range of added benefits that aid efficiency to the
software development lifecycle (SDLC). These benefits include:

Improved scalability. Each microservice can be scaled independently of others, instead of
scaling up the entire application framework. For instance, a specific service can be allocated
additional resources to scale its efficiency. Such an ability to scale resources for specific
services makes microservices more operationally efficient than monoliths.
Improved system resiliency. An application consists of multiple, independent services. By
design, when one service fails, the entire system remains fairly unimpacted. This allows the
application to remain functional, while the right team works on the affected service.
Better fault isolation. The loosely coupled nature of microservices makes it easier to find and
isolate faults of a particular service and fix them, reducing resolution times
Enhanced maintainability. It is easier to maintain a microservices-based application because
each service can be maintained, optimized, or enhanced for better performance without
impacting other services.
Bit-sized quicker deployments. Each service has its own codebase running in individual
containers. This enables quick development and deployment cycles that follow an efficient
DevOps model.
Flexibility in choosing a technology stack. Developers are not boxed in by particular
programming languages or libraries. This means teams have the freedom of choosing
whatever language and libraries that are most appropriate for implementing a service. More so,
every service is designed to run its own technologies that may be different than technologies
used by other services.

Limitations of microservices
Although a microservice architecture is gaining popularity due to its benefits of enhanced efficiency
and improved resiliency, it also comes with its limitations and challenges.

Increased complexity. Having a collection of polyglot services introduces a higher level of
complexity into the development process. There are more components to manage, and these
components have different deployment processes. The introduction of event-driven
communication is another challenge: such design is comparatively complex and requires new
skills to manage.
Complex testing. It is challenging to test microservice-based applications because of the
various testing dependencies required for each microservice. It is even more tasking to
implement automated testing in a microservice architecture because the services are running
in different runtime environments. Besides, the need to test each microservice before running
a global test adds more complexity to maintain the framework.
Higher maintenance overhead. With more services to handle, you have additional resources
to manage, monitor, and maintain. There is also the need for full-time security support: due to
their distributed nature, microservices are more vulnerable to attack vectors.

(See when microservices might not be the best fit for your software.)

Now we’ll turn to miniservices.

https://blogs.bmc.com/blogs/mtbf-vs-mtff-vs-mttr-whats-difference/
https://blogs.bmc.com/blogs/how-complex-systems-fail/
https://blogs.bmc.com/blogs/how-complex-systems-fail/
https://blogs.bmc.com/blogs/testing-automation/
https://blogs.bmc.com/blogs/microservices-challenges-when-to-avoid/


Miniservices architecture
As monoliths are challenging to scale because of size, and microservices are a lot more complex to
orchestrate and maintain, there was a need for a framework that addressed these challenges.

To solve this, a miniservices architecture fits the middle ground between monolith and
microservices architectures, a design that assumes a more realistic approach to implementing the
microservices concept.

The miniservices architecture is an architectural framework that has a collection of domain bounded
services with multiple responsibilities and shared data stores. Unlike microservices with a complete
de-coupling of services and their implementation details, miniservices can share libraries and
databases.

Characteristics of a miniservice architecture
Related services can share the same database. This allows modules that are related to each
other in the functions they perform to share a database. For instance, a miniservice may
perform multiple functions including image processing, rendering of images, or any other
related functions for an application.
Communication between services is through REST APIs.
Related services can share codebase and infrastructure used for deployment.

Benefits of using miniservices
Due to its derived design, miniservices inherit all benefits of a microservice architecture including
scalability, fault tolerance, and robustness.

Additionally, other benefits of adopting miniservices include:

Improved performance. By reducing the number of services, interconnections, and network
traffic between domains, miniservices enhance application performance
Shared maintenance overhead. With services handling various related functions, the
maintenance overhead associated with microservices is reduced.
Developer friendly. Miniservices are often more suitable for companies that cannot afford to
create smaller development teams dedicated to working on each individual service.

Limitations of miniservices
End-to-end testing can be a challenge with a miniservice framework due to the number of
dependencies associated with a single service. This also raises complexities with respect to
efficient error handling and bug discovery.

Microservices vs miniservices
Fine-grained alternatives to a monolithic framework, both microservice and miniservice
architectures divide applications into smaller pieces within specific bounded contexts.

At its elemental level, miniservices differ from microservices by allowing shared data storage and
infrastructure. Miniservices are steadily gaining momentum as a more pragmatic approach over

https://blogs.bmc.com/blogs/rest-vs-crud-whats-the-difference/
https://blogs.bmc.com/blogs/application-performance-management-in-devops/
https://blogs.bmc.com/blogs/error-budgets/
https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/


microservices.

As each of these architectures has its benefits and limitations, it’s vital that your organization perform
thorough due diligence before choosing the right one. It is equally important to factor in the
technologies, skills, and effort each of these frameworks require to maintain in the long run to avoid
budget overruns and operational hiccups.

Related reading
BMC DevOps Blog
APIs vs Microservices: What’s The Difference?
Microservices vs Serverless: Comparing Benefits & Differences
Kubernetes Guide
What Is ADDM? Application Discovery & Dependency Mapping Explained
Top DevOps Trends Today

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/microservice-vs-api/
https://blogs.bmc.com/blogs/microservices-vs-serverless/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/addm-application-discovery-dependency-mapping/
https://blogs.bmc.com/blogs/devops-trends/

