
MICROSERVICES VS APIS: WHAT’S THE DIFFERENCE?

A microservice is a small, single service offered by a company. It derives from the distributed
computing architecture that connects many small services, rather than having one large service. The
microservice can then be delivered through an application programming interface (API).

An API is a method of communication between a requester and a host, most often accessible
through an IP address. The API can communicate multiple types of information to users, such as:

Data you want to share
A function you want to provide

In short, talk of a microservice has to do more with the software’s architecture, and the API has to do
with how to expose the microservice to a consumer.

How microservices work
Microservices extend from the idea that a company provides a large, single service. Microservices
come as individual functions. If Microsoft Word were to be split into microservices, perhaps there
would be one offered as the blank sheet of paper, one as a spell checker, one service as a
formatting tool.

Kubernetes has allowed computer software to adapt. While Kubernetes has its own advantages, it
has also pushed software design away from a single monolith of services—and towards a
combination of many, small services working together. That’s because of the Kubernetes design,
which can:

Efficiently orchestrate the use of single containers on servers

https://blogs.bmc.com/blogs/devops-microservices/
https://blogs.bmc.com/blogs/what-is-kubernetes/


Increase system reliability and scalability
Decrease associated management and resource costs



(Learn more about microservice vs monolith
architecture.)

Examples of microservices
Microservices are very simple. Simplicity is a primary goal. They can be thought of as roles in a
company; one microservice serves a very particular role and has just one job to do.

DZone put together an excellent graph of different microservices that Uber offers, communicating
with one another through APIs and performing different tasks. Uber builds different services for each
task:

Passenger management
Passenger web UI
Billing
Driver management
Driver web UI
Payment
Trip management
Notifications

https://blogs.bmc.com/blogs/microservices-architecture/
https://blogs.bmc.com/blogs/microservices-architecture/


(Source)

Microservices can also be illustrated through graphs, where one microservice is a single node that
communicates to another service via an API. The architecture can grow and grow as more services
are tacked onto the system.

As you can imagine, the graphs of the large companies can be extensive, like a small city. Here are
the supposed graphs of Amazon and Netflix:

(Source)

Microservices rely on APIs
The API is a communication tool—it lets one service interact with another. An API itself cannot do
anything unless it is connected to something, like a cell phone that just sits there. The API becomes
useful when it is connected to services and microservices such as:

Function as a Service
Machine Learning as a Service
Software as a Service

https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://www.bmc.com/blogs/graph-databases/
https://divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others/
https://blogs.bmc.com/blogs/faas-function-as-a-service/
https://blogs.bmc.com/blogs/machine-learning-vs-predictive-analytics/
https://blogs.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/


The API is the way you can distribute the microservice to users. Instead of downloading software or
popping in a disc, the API distributes your service.

The API is necessary for the microservice architecture to function because the API is the
communication tool between its services. Without an API, there would be a lot of disconnected
microservices. Technically, the microservice would just build to be a monolith again.

How APIs work
APIs are extremely versatile. You can:

Create APIs on any containerized service
Use many different languages—Java, Python, Go, to name a few
Deploy APIs on any of the major cloud providers

APIs can increase both the usability and the exposure of your service. With the distribution made a
lot easier, you can offer smaller services. (After all, you don’t have to build a whole Adobe Suite just
to prove viability).

Many APIs are RESTful and exposed through an endpoint like an HTTP endpoint. This means
accessing information from an API is as easy as pinging a URL. GET, POST, PUT, DELETE commands,
in conjunction with the URL, work as expected, fetching data or giving data to the API. Though REST
APIs are the most common in modern web applications, other options include:

SOAP
RPC
GraphQL

As a product, the API endpoint is usually served alongside a developer portal that informs
developers how to use it and assigns devs an API key. If the goal of a microservice is to provide data
on the registered vehicles in a given county, then the dev portal will explain:

What the service does
How the data is structured (i.e.; a data schema)
What is required for a developer to use the API

Microservices vs APIs
Most good microservices have some type of API. If you want your microservice to be used, then
you’re going to create an API.

The API is to developers what having a social media account is to artists and creators. If you want
people to use it, you use an API so they can receive it.

Related reading
BMC DevOps Blog
Getting Started with Containers and Microservices for Enterprise Leaders
An Introduction To Micro Frontends
Microservices vs SOA: How Are They Different?

https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://blogs.bmc.com/blogs/python-vs-java/
https://blogs.bmc.com/blogs/go-vs-java/
https://blogs.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://blogs.bmc.com/blogs/rest-vs-crud-whats-the-difference/
https://blogs.bmc.com/blogs/soaps-service-orchestration-automation-platforms/
https://blogs.bmc.com/blogs/api-developer-portals/
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/getting-started-containers-microservices/
https://blogs.bmc.com/blogs/micro-frontends/
https://blogs.bmc.com/blogs/microservices-vs-soa-whats-difference/


The Death (or Not) of Microservices
What is a Citizen Developer?

https://blogs.bmc.com/blogs/death-of-microservices/
https://blogs.bmc.com/blogs/citizen-developer/

