MEAN SQUARE ERROR & R2 SCORE CLEARLY EXPLAINED

Today we're going to introduce some terms that are important to machine learning:

* Variance
e r2 score
e Mean square error

We illustrate these concepts using scikit-learn.

(This article is part of our scikit-learn Guide. Use the right-hand menu to navigate.)

Why these terms are important

You need to understand these metrics in order to determine whether regression models are
accurate or misleading. Following a flawed model is a bad idea, so it is important that you can
quantify how accurate your model is. Understanding that is not so simple.

These first metrics are just a few of them. Other concepts, like bias and overtraining models, also
yield misleading results and incorrect predictions.

(Learn more in Bias and Variance in Machine Learning.)

To provide examples, let's use the code from our last blog post, and add additional logic. We'll also
introduce some randomness in the dependent variable (y) so that there is some error in our
predictions. (Recall that, in the last blog post we made the independent y and dependent variables x
perfectly correlate to illustrate the basics of how to do linear regression with scikit-learn.)

https://blogs.bmc.com/blogs/machine-learning-hype-vs-reality/
https://blogs.bmc.com/blogs/scikit-learn/
https://blogs.bmc.com/blogs/scikit-learn/
https://blogs.bmc.com/blogs/bias-variance-machine-learning/
https://blogs.bmc.com/blogs/scikit-learn/

Getting started with AlOps is easy. Learn how you can manage escalating IT complexity with
ease! »

What is variance?

In terms of linear regression, variance is a measure of how far observed values differ from the
average of predicted values, i.e., their difference from the predicted value mean. The goal is to have
a value that is low. What low means is quantified by the r2 score (explained below).

In the code below, this is np.var(err), where err is an array of the differences between observed and
predicted values and np.var() is the numpy array variance function.

What is r2 score?

The r2 score varies between 0 and 100%. It is closely related to the MSE (see below), but not the
same. Wikipedia defines r2 as

".the proportion of the variance in the dependent variable that is predictable from the independent
variable(s)."

Another definition is "(total variance explained by model) / total variance." So if it is 100%, the two
variables are perfectly correlated, i.e., with no variance at all. A low value would show a low level of
correlation, meaning a regression model that is not valid, but not in all cases.

Reading the code below, we do this calculation in three steps to make it easier to understand. g is
the sum of the differences between the observed values and the predicted ones. (ytest - preds) **2.
y is each observed value y minus the average of observed values np.mean(ytest). And then the
results are printed thus:

print ("total sum of squares", y)
print ("total sum of residuals ", g)
print ("r2 calculated", 1 - (g / vy))

Our goal here is to explain. We can of course let scikit-learn to this with the r2_score() method:

print("R2 score : %.2f" % r2 score(ytest,preds))

What is mean square error (MSE)?

Mean square error (MSE) is the average of the square of the errors. The larger the number the larger
the error. Error in this case means the difference between the observed values y1, y2, y3, .. and the
predicted ones pred(y1), pred(y2), pred(y3), .. We square each difference (pred(yn) - yn)) ** 2 so that
negative and positive values do not cancel each other out.

https://blogs.bmc.com/it-solutions/aiops.html
https://blogs.bmc.com/it-solutions/aiops.html
https://en.wikipedia.org/wiki/Coefficient_of_determination

The complete code

So here is the complete code:

import matplotlib.pyplot as plt

from sklearn import linear_model

import numpy as np

from sklearn.metrics import mean squared error, r2 score

reg = linear model.LinearRegression()
ar = np.array(,,1, ,,11)

y = ar

X = ar

reg.fit(x,y)

print('Coefficients: n', reg.coef)
xTest = np.array(,,])

ytest np.array(,,])

preds reg.predict(xTest)
print("R2 score : %.2f" % r2 score(ytest,preds))
print("Mean squared error: %.2f" % mean squared error(ytest,preds))

er = []
g=20
for i in range(len(ytest)):
print("actual=", ytest, " observed=", preds)

X = (ytest - preds) **2
er.append(x)
g=g9g+X
X =0
for 1 in range(len(er)):
X = X + er

print ("MSE", x / len(er))

vV = np.var(er)
print ("variance", v)

print ("average of errors ", np.mean(er))

m = np.mean(ytest)
print ("average of observed values", m)

y =20
for 1 in range(len(ytest)):
y =y + ((ytest - m) ** 2)

print ("total sum of squares", vy)
print ("total sum of residuals ", g)
print ("r2 calculated", 1 - (g / vy))

Results in

Coefficients:

]
R2 score : 0.62
Mean squared error: 2.34
actual= observed=
actual= observed=
actual= observed=
MSE
variance 1.2881398892129619
average of errors 2.3402861111111117
average of observed values 10.5
total sum of squares
total sum of residuals

r2 calculated

You can see by looking at the data np.array(,], ,,]1) that every dependent variable is roughly twice
the independent variable. That is confirmed as the calculated coefficient reg.coef_ is 2.015.

There is no correct value for MSE. Simply put, the lower the value the better and 0 means the model
is perfect. Since there is no correct answer, the MSE's basic value is in selecting one prediction
model over another.

Similarly, there is also no correct answer as to what R2 should be. 100% means perfect correlation.
Yet, there are models with a low R2 that are still good models.

Our take away message here is that you cannot look at these metrics in isolation in sizing up your
model. You have to look at other metrics as well, plus understand the underlying math. We will get
into all of this in subsequent blog posts.

Ready to discover how BMC Helix for ServiceOps can transform your husiness?

Additional Resources

Extending R-squared beyond ordinary least-squares linear regression from pcdjohnson

https://blogs.bmc.com/it-solutions/serviceops.html
https://www.slideshare.net/pcdjohnson/extending-rsquared-beyond-ordinary-leastsquares-linear-regression-95949488
https://www.slideshare.net/pcdjohnson

