
TOP MACHINE LEARNING ALGORITHMS & HOW TO GET STARTED

Machine learning is not reserved for men in lab coats. Great educational institutions do not harbor
secret knowledge or skills. Machine learning can be done by anyone; you just need to know which
knob to turn, and when.

If you’re a beginner, machine learning can feel overwhelming—how to choose which algorithms to
use, from seemingly infinite options, and how to know just which one will provide the right
predictions (data outputs). Of course, there are plenty of how-to’s and tutorials out there. Diving into
these gives you glimpses of the whole.

In this article, I offer an overview of how all the parts fit together.

Like I can say a car is assembled from a set of tires, chassis, and an engine, and you know it’s not
actually that simple, but a decent start overall, here I give something similar to Machine Learning
models and their algorithms. This overview of ML algorithms offers a fine balance of:

Ease
Lower computational power
Immediate, accurate results

We’ll cover: how ML works, tools you’ll use, ML types, layers of ML, and finally, the algorithms. At the
end, I’ll also recommend additional resources for your ML journey. Let’s get started!

https://blogs.bmc.com/blogs/citizen-data-scientist/
https://blogs.bmc.com/blogs/artificial-intelligence-vs-machine-learning/


How ML works
Machine learning is a branch of statistics, specifically geared towards modelling. Machine learning
models are capable of “learning” by:

Making a prediction1.
Testing the prediction2.
Measuring the error3.
Modifying the weights of the model to try and decrease the error (all the nodes in the hidden4.
layer)
Making a new prediction5.

Machine Learning iterates on this cycle over and over and over. This iterative cycle is the resource-
rich component of ML. The data gets passed around on the computer, the model itself has a size,
and the back propagation step that readjusts the model’s weights all take computer resources.

Then, when those steps get repeated thousands (or billions) of times over, that can cost a lot of
computational resources.

Tools to get started
The Keras library is a Python package designed to handle a lot of the underlying details for ML
engineers. It provides out-of-the-box models to handle some of the basic modelling needs. It is built
on top of TensorFlow. TensorFlow, PyTorch, and SciKit Learn are a few of the largest machine
learning libraries, with a shift in preference moving towards PyTorch.

If you get started with Machine Learning, likely you’ll be using one of these frameworks and writing
your code in Python.

Types of machine learning
At its most basic, machine learning is a way for computers to run various algorithms without direct
human oversight in order to learn from data. Machine learning can include running any variety of
tasks in order for the machine to determine a high-probability outcome for various information, such
as:

The functions between input and output
The hidden structures in unlabeled data

In instance-based learning, the machine can produce class labels by comparing previous instances.
These ways of learning are summed up in the three types of machine learning algorithms:

Supervised learning
Supervised learning methods rely on labeled training data sets to learn a function between input
variables (X) and output variables (Y). The most common types include:

Classification methods, which predict the output of a given data sample when the output
variable fits into one category, for instance dead or alive, sick or healthy.
Regression methods, which predict output variables that are real values, such as the age of a

https://blogs.bmc.com/blogs/machine-learning-data-science-artificial-intelligence-deep-learning-and-statistics/
https://blogs.bmc.com/blogs/machine-learning-ai-frameworks/
https://blogs.bmc.com/blogs/machine-learning-ai-frameworks/
https://blogs.bmc.com/blogs/python-tooling/


person or the amount of snowfall.
Ensemble methods, which combine predictions from weaker algorithmic output to predict
new output.

Unsupervised learning
These methods use only input variables (X), not output variables, and rely on unlabeled training data
sets to map the underlying structure of the data. Common examples include:

Association methods, which uncover probability of items in a collection, as in market-basket
analysis.
Clustering methods, which group samples of objects based on similarity.

Reinforcement learning
Reinforcement learning methods allow the user or other designated agent to decide the best next
action, based on the current state and learned behaviors that maximize the rewards. This approach
is common in robotics.

Machine learning layer by layer
The technical elements of Machine Learning are:

Data inputs1.
Model layers2.
An activation function3.
An output layer4.
Back propagation method5.

Given these five things, you can
build a machine learning model. These five things each have a lot that can be known about them,



and, like a well-constructed watch, all five parts need to coordinate and cooperate with one another
in order for the whole model to work.

Let’s look at each piece in detail.

Preprocess your data
After determining the type of learning (above) that needs to happen on your data, building the
Machine Learning Model algorithms begins with the pre-processing step. You’ll need to configure
your data to work with the model.

All data can be placed into one of two categories, and how it moves down the pipe depends which
category it gets placed into:

Categorical: Nominal or ordinal
Numerical: Discrete or continuous

If there are lots of tasks in this preprocessing step, this step is often known as the data pipeline—the
data changes as it goes down the pipe. If you are actively changing data to fit into a model, that is
called feature engineering. The data can consist of different types like image data and text data.

The input & model layers
We can demystify the otherwise symbolic first layer of the neural network. The input layer is literally
the data that’s input into the model.

The number of nodes in the input
layer on the neural network diagram corresponds exactly to the number of features of data. If you
used age data, education data, and income data to predict how many airplane flights one will take in
a lifetime, then that is three data features, and would be represented as three nodes in the neural
network graph.

Now, images or language can’t be processed directly by the model, so they get transformed in the
data pipeline by a number of encoding methods to convert either colors or language into a series of
numbers for the model to be able to work with.

Popular encoding methods are:

One-hot encoding

https://blogs.bmc.com/blogs/data-pipeline/
https://blogs.bmc.com/blogs/neural-network-introduction/
https://blogs.bmc.com/blogs/ai-language-model/


Label encoding
TF-IDF vectors

The activation layer
Every machine learning model is composed of layers. The activation layer is the step that converts
the hidden layer’s values into the output. The activation layer is responsible for returning an output
such as Cat or Dog, 0 or 1, or, instead of a hard label, it can return a percentage like .45.

There are many, many kinds of activation layers and their use will vary based on what kind of
problem is being solved.

Curves of some activation functions look like this:

Based on the curves, you can
see how the activation function creates a set of possibilities for the outputs. So, you can pick the
activation based on which possibilities you wish to see in the output. I will explain.

If the output needs to be an either/or output like a classifier, then a binary step function or
ReLU may work because it returns one number or another.
If you need numbers between two limits like 0 or 1, or -1 and 1 then tanh or the sigmoid
functions are your go-tos because they allow a range of possibilities between those limits.

Sometimes, modelers will require the percentage of their function to be over X% in order to label
their output as a single entity.

The output layer & back propagation
Finally, let’s demystify the last layer of the neural network. The “output layer” is literally the data
returned from the activation function.

If the activation function returns an either/or response, then it will be graphed as two nodes.
If the model is a multi-label classifier and can return eight different kinds of labels, then the
final output layer on the graph will be drawn with eight nodes.

The learning element of machine learning, which separates machine learning from other non-
algorithm-based models, is the back propagation step. This one step single-handedly allows a

https://en.wikipedia.org/wiki/Activation_function


model to learn by

Calculating the error of the model’s predictions.1.
Fine-tuning the weights of the model back in the hidden layer to make a more accurate2.
prediction.

The model’s ability to learn relies on its ability to predict a known value, measure its error, then
reconfigure its weights so that, on the next prediction, the model can make a better prediction. Back
propagation is entirely responsible for the “learning” element of machine learning.

Back propagation deals
with the idea of gradient descent. Imagine an empty swimming pool or the bowl at a skatepark. You
begin on its edges, and you have to take one step at a time to reach its lowest point; that would be
gradient descent. A model’s prediction will have an error, and a surface can be made from that error
function. The lowest point on the surface will be the point with the lowest error.

If you are on the edge of the swimming pool, far from the lowest point, you exist in a space where
the model’s predictions are very wrong. If you are inches from the drain, you are very close to
making accurate predictions.

The major adjustable component for any ML newbie is tweaking the learning rate (alpha). This
learning rate tells the algorithm how big each step should be to reach the lowest point.

There is a risk with being too small or too large. Small steps mean it can take a very long time to inch
towards the lowest point, and large steps mean you can actually overshoot it and go out the other
side of the pool.



(Source)

These are the basics to the back propagation step. The surface, the way the errors are visualized,
can grow more technical.

Popular ML algorithms for beginners
The construction of the model’s layers define what kind of algorithm is going to be used. There are
four main tasks machine learning solves:

Regression predicts an outcome.
Classification labels a piece of data.
Generation uses data to generate like-data.
Sequencing predicts the next element in a sequence.

Now, let’s look at some specific algorithms that fall into these categories.

Linear regression
Despite its name, linear regression is a classification method, not a regression method. This
predictive modeling approach is very well understood—statistics has been using this tool for
decades before the invention of the modern computer.

The goal of linear regression is to make the most accurate predictions possible by finding the values
for two coefficients that weight each input variable. These techniques can include:

Linear algebra
Gradient descent optimization
And others

Employing linear regression is easy and generally provides very accurate results. More experienced
users know to remove variables from your training data set that are closely correlated and to
remove as much noise (unrelated output variables) as possible.

To employ a simple linear regression model in Keras, the python code looks like this. And as ML
expert Aurélien Géron points out, the main difference between this linear regression and a

https://www.jeremyjordan.me/nn-learning-rate/
https://blogs.bmc.com/blogs/machine-learning-architecture/
https://www.kdnuggets.com/2017/10/top-10-machine-learning-algorithms-beginners.html
https://en.wikipedia.org/wiki/Heteroscedasticity
https://twitter.com/aureliengeron


classification model is on the output layer.

The line keras.layers.Dense(1) has only one output neuron, and we see, here, the activation function
that’s used is the “relu”.

model = keras.models.Sequential(),
keras.layers.Dense(1)
])

(Géron’s Hands On Machine Learning with SciKit 2e, pg. 303)

Logical regression
Similar to linear regression, logical regression is another statistical method for classification that finds
the values for two coefficients that weight each input variable.

The difference is that this solves problems of binary classification, relying on a logical, non-linear
function instead. Therefore, logical regression determines whether a data instance belongs to one
class or another and can also provide the reason behind the prediction, something linear regression
cannot do.

When using this algorithm, limiting correlating data and removing noise is important.

Classification
Classification and regression trees are easy to learn and use, and they’re accurate for a whole range
of problems. These are especially speedy to implement, as the data requires no special preparation.

More data is better for machine learning models, so, where possible—image data, for
example—instead of needing to one-hot encode a data input, modelers will try to create similar data
points from the given ones.



For our example of images, images in the dataset can be flipped, blurred, cut, mirrored, stretched
many different ways to get more data, and more specifically, more labelled data. If the image was a
dog before the image was blurred a bit, then it is still a dog after.

The most common Neural Network architecture for classification is the Convolutional Neural
Network (CNN).

Classification in a Neural Network looks like this:

model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))

(Ibid, pg. 295)

Compared to the linear regression algorithm, this has two hidden layers inside it using the ReLu
activation function and a final softmax activation on the output layer. The two middle layers have
300 and 100 nodes respectively.

The input layer is an image that is 28 pixels wide by 28 pixels tall. The input layer is told to flatten the
28x28 image and each pixel gets a node on the input layer. 28 * 28 = 784, so there will be 784 nodes
as the input layer.

This classification model was built for the MNIST data which classifies a handwritten digit as 0-9.
Since there are 10 possible outcomes, the output layer has 10 available nodes.

K-nearest neighbor (KNN)
With the K-nearest neighbor method, the user specifies the value of K. Unlike previous algorithms,
this one trains on the entire dataset.

The goal of KNN is to predict an outcome for a new data instance. The algorithm trains the machine
to check the entire dataset to find the k-nearest instances to this new data instance or to find the k-
number of instances that are most similar to the new instance. The prediction, or output, is one of
two things:

The mode or most frequent class, in a classification problem
The mean of the outcomes, in a regression problem

This algorithm usually employs methods to determine proximity such as Euclidean distance and
Hamming distance. Euclidean distances are the kinds of distances that everybody learns in early
education. It maintains that the shortest distance between two points is a straight line. (In other
geometries, this statement becomes false.)

KNN works like this. When a bunch of data is thrown on the table, the KNN algorithm begins to sort
each into separate categories.



(Source)

A person employs the KNN algorithm when solving a 500-piece puzzle. Typically, you’ll dump the
pieces on a table and place each piece (a piece of data) into a category, an easily identifiable color
or object on the final image. By sifting and ordering, over and over, pieces that share the same color
get closer and also get placed further from unlike colors.

The advantages of KNN are:

Simplicity
Ease of use

Though it can require a lot of memory to store large datasets, KNN only calculates (learns) at the
moment a prediction is needed.

When using a high number of input variables, the machine-learned understanding of “closeness”
can be compromised. This situation, known as the curse of dimensionality, can be avoided by
limiting your input variables to only those that are most relevant to predicting the output.

Naïve Bayes
Like other beginner algorithms, the Naïve Bayes algorithm is a classifier that uses training data in a
simple manner with powerful outputs. Naïve Bayes employs the Bayes theorem of probability to
classify content. The Bayes Theorem calculates probability of an event occurring or a hypothesis
being true based on prior knowledge, making the model able to handle two types of probabilities:

Determining class1.
Determining a conditional probability of each class, provided X value2.

https://www.flickr.com/photos/generated/501445202/in/photostream/
https://en.wikipedia.org/wiki/Bayes%27_theorem


Importantly, the “naïve” part of the title is based on the algorithm’s assumption that the variables are
independent of each other, which is often unrealistic in real-world examples.

The content best suited for this Naïve Bayes is often language-based, such as:

Web pages
Articles
Smaller bodies of text, like tweets or metadata from blogs

This algorithm is a go-to option when trying to rank content or classify data based on categories
(content themes). This algorithm has also been used effectively in:

Predicting disease development and location
Analyzing human sentiment

Learning materials
That concludes this overview of machine learning algorithms. Here are some learning materials I’ve
used and recommend to you:

Online courses
Andrew Ng’s ML Coursera (The quintessential ML course)
A-Z Deep Learning from Udemy
MITx

Book
Aurélien Géron’s Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition

BMC resources
BMC Machine Learning & Big Data Guide
Learning Machine Learning (Free e-book)
BMC Guides for TensorFlow, Keras, scikit-learn, Data Visualization, and more
Machine Learning Architectures Explained
Interpretability vs Explainability: The Black Box of Machine Learning
Containerized Machine Learning: An Intro to ML in Containers

https://www.coursera.org/instructor/andrewng
https://www.udemy.com/course/deeplearning/
https://openlearning.mit.edu/courses-programs/mitx-courses-edx
https://homl.info/get/
https://homl.info/get/
https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/forms/machine-learning-ebook.html
https://blogs.bmc.com/blogs/guides/
https://blogs.bmc.com/blogs/machine-learning-architecture/
https://blogs.bmc.com/blogs/machine-learning-interpretability-vs-explainability/
https://blogs.bmc.com/blogs/machine-learning-containers/

