
THE LUA PROGRAMMING LANGUAGE BEGINNER’S GUIDE

In this article, we’ll cover the basics of the Lua programming language, including:

What it is
Main components
Key features
Pros & cons
Use cases
Lua vs other languages
Installing Lua in a Windows environment
Getting it up and running

Let’s get started.

What is Lua?
Lua is a robust, lightweight, and embeddable scripting language that
supports multiple programming methods, including procedural, object-
oriented, functional, and data-driven programming.

As the primary focus on Lua is for scripting, it is rarely used as a standalone programming language.

Instead, it is used as a scripting language that can be integrated (embedded) into other programs
written in mainly C and C++. It also supports other programming languages via third-party plugins
(NLua/KeraLua for .NET/C#).

Popular use cases for Lua include:

As a popular component in video game and game engine development. For example,
Warframe, World of Warcraft, and CRYENGINE all use Lua.
As a programming language in many network programs, like CISCO Systems, Nmap, and
ModSecurity.
As a programming language in industrial programs such as Adobe Lightroom and MySQL
Workbench.
As a library that developers can integrate with their programs to enable scripting functionality.

Being a scripting language, Lua does not have its own main application. Instead, it acts exclusively
as an embedded part of the host application.

(Explore the most popular programming languages.)

How Lua works
There are two main components of Lua:

The Lua interpreter
The Lua virtual machine (VM)

Lua is not directly interpreted through a Lua file like other languages such as Python. Instead, it uses
the Lua interpreter to compile a Lua file to bytecode. The Lua interpreter is written in ANSI C, making
it highly portable and capable of running on a multitude of devices.

Usually, the compilation is done at the runtime. However, sometimes it can be done before the
runtime to increase load times. Then the Lua virtual machine will run this compiled bytecode. The
register-based architecture of the Lua virtual machine closely resembles actual hardware
architectures, and it will increase the overall performance of the program.

Key features of Lua
So, what’s so great about Lua? These are the defining features:

https://github.com/NLua/NLua
https://github.com/NLua/KeraLua
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/
https://blogs.bmc.com/blogs/programming-languages/
https://blogs.bmc.com/blogs/python-vs-java/

Speed
Lua is considered one of the fastest programming languages among interpreted scripting
languages. In particular, Lua can perform large task orders faster than most other programming
languages in both benchmarking and real-world scenarios.

For more speed, an independent implementation of Lua called LuaJIT uses a just-in-time compiler
that makes Lua even faster.

Size
Lua has a considerably smaller footprint than other programming languages, with its complete
source code and documentation taking a mere 1.3 MB. The Lua interpreter with all the standard
libraries takes 278K, while the complete Lua library takes only 466K.

This small size is ideal when integrating Lua into multiple platforms, from embedded devices to
massive game engines, where every byte is valuable.

Portability & embeddability
With its small size, the portability of Lua is nearly unlimited; any platform that supports the standard
C compiler can run Lua out of the box. Lua’s speed and size become huge advantages when
embedding Lua with another programming language. That’s because they can help increase the

https://luajit.org

speed of the program without hindering any existing functionality.

Importantly, Lua does not require complex rewrites to be compatible with other programming
languages. Lua can be used with primary programming languages like C, C++, Java, C#, etc.. and
other scripting languages like Perl and Ruby, further extending its usability.

Simplicity
Lua is simple in design yet provides powerful functionality. One of the core features of Lua is meta-
mechanisms which enable developers to implement features—rather than providing a bunch of
features directly in the language itself.

Lua also comes with incremental garbage collection, reducing memory usage and implementation
complexity. Its sandboxing feature can be used to isolate functions and resources. This increases the
security of the program and provides coroutines for multitasking.

All these features come with a simple syntax and easily understandable format so that anyone can
easily pick up Lua and use it in their programs.

License
Lua is free and open-source software distributed under the MIT license. This means anyone can use
Lua for any purpose without paying any licensing or royalty fees.

Advantages & drawbacks
Like any language, Lua has its pros and cons.

Advantages of Lua
Easy app integration. Its high performance and small size make it easy to integrate Lua into
applications.
Simple syntax. Relatively simple syntax structure with around 20 dedicated keywords, which
helps to dive into Lua programming easily.
Flexibility. Without standard libraries, you can customize Lua to meet any need.
Cross-platform compatibility and support for the standard C compiler allows Lua to run
virtually anywhere.
Dynamic variables in Lua allow defining variables without defining types, and the type is
determined automatically at the runtime.
Easy debugging. Simple and powerful debug library.
Plenty of documentation. Comprehensive documentation to get Lua projects up and running
quickly and the active community.

Disadvantages of Lua
Limited error handling support can lead to longer debug times to identify the exact errors in a
Lua script.
All variables are created as global variables (global scope), which can lead to errors in variable
assignments.

Limited pattern matching support.

When to use Lua
As a scripting language without major limitations, you can use Lua for any scenario, from a simple
backend script in a web server to complex game development.

Lua is highly prevalent in video game development as it can be used to create functionality without
contaminating the overall performance while also keeping everything separate.

Another area that Lua excels is embedded programming, where size and performance are major
concerns. Lua can be used in everyday applications to extend the existing functionality or create
new features and functions.

Some popular games, programs, and services that use Lua are Dark Souls, Fable II, Garry’s Mod,
Wireshark, VLC, Apache, and Nginx Web Servers.

Lua vs other languages
How does Lua stack up against other languages?

Here’s a look at the differences between the high-level general programming language Python, the
high-level object-oriented Java, and web-focused Javascript—all compared to Lua.

Installing Lua
Now, let's see how to set up a development environment in Windows. First, we’ll install Lua.

Step 1
Navigate to the Lua.org download page. Here, we will be using a precompiled binary to install Lua in
windows. So, click on “get a binary link” as shown in the below screenshot.

https://www.lua.org/download.html

Step 2
Click "Download" on the LuaBinaries page, and you will be redirected to a page with a list of
precompiled binaries. Select the appropriate version from that list.

We will be using the latest Lua version for Windows 64 bit.

This
will direct the user to a SourceForge page, where the binary will be downloaded.

Step 3
Move the downloaded Zip file to any location to store the binaries permanently.

Here, we will be using the “D:\Program Files\Lua” as the location. After moving the Zip file, simply
extract its content using any compression utility (Ex: Windows Explorer, 7zip, WinRar).

Step 4
We need to add the location of Lua binaries to the system PATH so that Windows can call Lua from
anywhere in the system.

Step 4.1. Navigate to Environment Variables. (Open Windows Explorer, right-click on This PC, and
select properties.)

Step
4.2. Click on “Advanced System Settings” in the screen that appears and then click on “Environment
Variables”.

Step
4.3. In the system variables section, add the location of the Lua executables as a new entry for the
Path variable.

Step 5
Check if the system identifies Lua by opening up a command prompt or a PowerShell window and
typing the Lua command (Lua with the version - lua54).

Setting up a Lua development environment
Now that we have installed Lua in the system, we need a development environment to go ahead
with coding. For that, we can choose between:

A dedicated Lua IDE like ZeroBrane Studio
A general IDE like VSCode

We will be using VSCode for this instance.

Step 1
Let's create a file called "lua_basic.lua" in VSCode and save that file in the desired location. Then we
will type some print statements there like the following.

print("Hello Lua")
print(10*10)
print("We have multiplied 10 by 10")

https://studio.zerobrane.com
https://code.visualstudio.com

Step 2
Our Lua program needs to be compiled before running, so we need to create a Build Task. To do
that, click on Terminal Menu, then Run Built Task and select the Configure Build Task Option.

(There will be different build task templates depending on the VSCode configuration. Select "Create
tasks.json from template" and finally the "Others" option to define a custom build task.)

Run Build Task

Confi
gure Build Task

Creat
e tasks.json from template

Other

Step
2.1. We will add the following code block to configure the task. In that code block, we have defined
a task called “Run Lua” that will run on the shell with the command “lua54”. That command will take
the current file as the argument and carry out a build operation.

{

 "version": "2.0.0",
 "tasks": ,
 "group": {
 "kind": "build",
 "isDefault": true
 }
 }
]
}

task.json

Step 3
Open up the "lua_basic.lua" file again. Then go to the "Terminal" again and click on "Run Build Task"
or use the shortcut Ctrl+Shift+B.

This
will compile the file and provide us with the output.

That’
s it! Now we have a working Lua development environment that can be used to create Lua scripts.
We can use the official Lua reference manual to explore the Lua language further.

Lua is powerful
Lua is a powerful scripting language that has limitless potential to add functionality to any program

https://www.lua.org/manual/5.4/

on a multitude of platforms to suit any use case.

Related reading
BMC DevOps Blog
Top 5 Best Practices for Software Development
Java vs Go: What’s The Difference?
Python Development Tools: Your Python Starter Kit
DevOps Engineer Roles & Responsibilities
API/Developer Portals: How To Create Great API Portals

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/software-development-best-practices/
https://blogs.bmc.com/blogs/go-vs-java/
https://blogs.bmc.com/blogs/python-tooling/
https://blogs.bmc.com/blogs/devops-engineer-roles-and-responsibilities/
https://blogs.bmc.com/blogs/api-developer-portals/

