
KUBERNETES VS DOCKER: A QUICK COMPARISON

Kubernetes and Docker are different technologies that may work separately—but they’re best
paired to facilitate high scalability and availability in containerized applications.

While Docker specifically manages containers on individual nodes, Kubernetes helps you automate
tasks like load balancing, scaling, container provisioning, and networking across several hosts within
a cluster.

Increasing organizational best practices patterns also suggests integrating Kubernetes and Docker
to create an isolation mechanism that lets you augment container resources more efficiently. With
these constructs, developers can collaborate on complex projects without having to replicate the
entire application in their respective IDEs.

(This article is part of our Kubernetes Guide. Use the right-hand menu to navigate.)

Docker overview
Docker is an open-source containerization platform that simplifies the deployment of applications
on any computing infrastructure. While there is a host of other containerized technologies
worldwide, Docker continues to be the most popular Platform as a Service for application build and
deployment.

Through a text file format (dockerfile), Docker lets you package applications as self-sufficient,
portable components that you can easily deploy on-premises or on the cloud. Docker’s runtime
environment, the Docker Engine, allows developers to build applications on any machine and share
images through a registry for faster deployments.

https://blogs.bmc.com/blogs/what-is-kubernetes
https://blogs.bmc.com/blogs/docker-101-introduction/
https://blogs.bmc.com/blogs/load-balancing/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://blogs.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/


Kubernetes overview
As applications scale up in size, they require multiple containers hosted on distributed servers.
When many distributed containers make operating the application tedious and complicated,
Kubernetes forms a framework that efficiently controls how containers run.

Besides allowing your containers to run, Kubernetes also solves issues that arise when scaling
several distributed containers by orchestrating a cluster of virtual machines (VMs) and creates a
schedule for running containers on each VM. To manage container schedules and computing
resources, Kubernetes:

Provides an application programming interface (API)
Maintains high availability through advanced autoscaling and automatic load balancing

https://blogs.bmc.com/blogs/containers-vs-virtual-machines/


Comparing Kubernetes & Docker
With today’s advanced technologies, Docker and Kubernetes solve different problems arising from
diverse backgrounds of application development.

An organization may use Kubernetes with other container runtimes interfaces, such as CRI-O and
RunC, and at the same time use Docker with other orchestration tools for communication between
multiple nodes by forming a network of containerized applications.

Let’s take a look at how these two technologies compare.

Similarities
Both Docker and Kubernetes work toward creating high application availability—but they use
different approaches to do so:

Kubernetes replicates pods across all nodes within a cluster and avoids downtime by

https://blogs.bmc.com/blogs/it-orchestration-vs-automation-whats-the-difference/
https://blogs.bmc.com/blogs/reliability-vs-availability/


detecting and acting on failed nodes.
Docker distributes nodes across the Swarm, managing and replicating resources at scale to
ensure high availability.

Kubernetes and Docker are both open-source frameworks, with large, globally distributed
communities for support and consultation:

Kubernetes gets unlimited support from the three prominent cloud service providers, Azure,
GCP, and AWS, and also from open-source communities.
Docker benefits from a growing base of active community users who regularly contribute with
updates and plugins that improve the framework’s functionality.

Differences
Docker provides a framework for packaging and distributing applications as microservices in
containers, while Kubernetes handles these containers’ management, control, and coordination.
Since this makes the two technologies fundamentally incomparable, it makes more sense to
differentiate between Kubernetes and Docker Swarm, Docker’s native cloud orchestration tool.

Docker Swarm comes with its own API and perfectly fits into the Docker ecosystem. Any
organization that uses Docker for containerization also uses Docker Swarm to make transitioning and
provisioning relatively easy. This tight integration and simplicity also make Docker Swarm the go-to
orchestration tool for light development needs.

But, this changes when you’re dealing with complex-scale application provisioning. In this case,
Kubernetes replaces Swarm as the trusted orchestration tool. That’s because Kubernetes:

Comes with a rich collection of tools and an interactive user interface, making it perfect for
complex workflows and large production environments.
Offers the flexibility to extend and customize it to handle any workload, enhancing auto-scaling
and system monitoring.

A Docker Swarm is used to run on a single node, while Kubernetes runs across a distributed cluster.
This essentially means that Docker Swarm can only share data volumes between different
containers sharing a pod, while Kubernetes shares storage volumes between all containers within a
cluster.

The Kubernetes & Docker synergy
Instead of thinking about K8s versus Docker, you’ll get much better scaling and stability when you
use them together.

While Kubernetes integrates with most other container runtimes, it integrates seamlessly with
Docker. There are plenty of Docker-centric tools that convert Docker settings to be used in
Kubernetes.

On the same lines, Docker embraces the Kubernetes integration through an Enterprise Kubernetes
Distribution. An integration between the two improves the architecture of microservices, facilitates
quicker production times, and coordinates containerized applications.

https://blogs.bmc.com/blogs/cloud-availability-regions-zones/


Using containers
Containers help organizations create portable, scalable, and responsive applications that can be
deployed on any computing infrastructure. While Docker’s use-cases are inclined towards creating
individual containers, Kubernetes is utilized to manage multiple containers during runtime. Running
Docker Containers with Kubernetes allows organizations to leverage DevOps best practices by
coordinating and orchestrating containerized applications efficiently.

Related reading
BMC DevOps Blog
Kubernetes Guide, a series of tutorials
State of Containers in 2020
Containers Aren’t Always the Solution

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/what-is-kubernetes
https://blogs.bmc.com/blogs/state-of-containers/
https://blogs.bmc.com/blogs/containers-solution/

