
USING KUBERNETES PORT, TARGETPORT, AND NODEPORT

(This article is part of our Kubernetes Guide. Use the right-hand menu to navigate.)

Port configurations for Kubernetes Services
In Kubernetes there are several different port configurations for Kubernetes services:

Port exposes the Kubernetes service on the specified port within the cluster. Other pods within
the cluster can communicate with this server on the specified port.
TargetPort is the port on which the service will send requests to, that your pod will be listening
on. Your application in the container will need to be listening on this port also.
NodePort exposes a service externally to the cluster by means of the target nodes IP address
and the NodePort. NodePort is the default setting if the port field is not specified.

Let’s look at how to use these ports in your Kubernetes manifest.

Interested in Enterprise DevOps? Learn more about DevOps Solutions and Tools with BMC. ›

Using Port, TargetPort, and NodePort
apiVersion: v1
kind: Service

https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/kubernetes-services/
https://blogs.bmc.com/it-solutions/devops.html

metadata:
 name: hello-world
spec:
 type: NodePort
 selector:
 app: hello-world
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 80
 nodePort: 30036

From the above examples the hello-world service will be exposed internally to cluster applications
on port 8080 and externally to the cluster on the node IP address on 30036. It will also forward
requests to pods with the label “app: hello-world” on port 80.

The configuration of the above settings can be verified with the command:

$ kubectl describe service hello-world

Create a pod running nginx to which the service will forward requests to:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 app: hello-world
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

To test and demonstrate the above configuration, we can create a pod running an ubuntu container
to execute some curl commands to verify connectivity.

$ kubectl run -i --tty ubuntu --image=ubuntu --restart=Never -- sh

From this pod run the following commands:

Curl the service on the ‘port’ defined in the Kubernetes manifest for the service.

$ curl hello-world:8080

This proves that curling the Kubernetes service on port 80 forwards the request to our nginx pod
listening on port 80.

To test the NodePort on your machine (not in the ubuntu pod) you will need to find the IP address of
the node that your pod is running on.

$ kubectl describe pod nginx

Now, you can curl the Node IP Address and the NodePort and
should reach the nginx container running behind the Kubernetes service.

Additional resources
For more on Kubernetes, explore these resources:

Kubernetes Guide, with 20+ articles and tutorials
BMC DevOps Blog
Bring Kubernetes to the Serverless Party
How eBay is Reinventing Their IT with Kubernetes & Replatforming Program

https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/bring-kubernetes-to-the-serverless-party/
https://blogs.bmc.com/blogs/ebay-kubernetes-replatforming/

