KUBERNETES INGRESS EXPLAINED

In any Kubernetes cluster, applications must be able to connect with the outside world to provide
end-users with access to the application. Kubernetes Ingress is one option available—let's take a
look.

(This article is part of our Kubernetes Guide. Use the right-hand menu to navigate.)

What is Kubernetes Ingress?

Kubernetes Ingress is an API object that provides routing rules to manage access to the services
within a Kubernetes cluster. This typically uses HTTPS and HTTP protocols to facilitate the routing.

Ingress is the ideal choice for a production environment. Users can expose services within the
Kubernetes cluster without having to create multiple load balancers or manually exposing services.

Moreover, K8s Ingress offers a single entry point for the cluster, allowing administrators to manage
the applications easily and diagnose any routing issues. This decreases the attack surface of the
cluster, automatically increasing the overall security.

Some use cases of Kubernetes Ingress include:

 Providing externally reachable URLs for services

» Load balancing traffic

 Offering name-based virtual hosting

e Terminating SSL (secure sockets layer) or TLS (transport layer security)

Kubernetes Ingress supports multiple protocols, authentication, content-based routing, etc., and


https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/kubernetes-services/
https://blogs.bmc.com/blogs/load-balancing/

allows users to manage and configure them in Kubernetes clusters easily.

Kubernetes Ingress consists of two core components:

 Ingress API object. The API object indicates the services that need to be exposed outside the
cluster. It consists of the routing rules.

 Ingress Controller. Ingress Controller is the actual implementation of Ingress. It is usually a
load balancer that routes traffic from the API to the desired services within the Kubernetes
cluster.

What is an Ingress controller?

The actual implementation of Kubernetes Ingress, the Ingress controller is responsible for the traffic
routing from external sources to the appropriate services in the Kubernetes cluster. Ingress
controllers support routing through both the transport layer (OSI - Layer 4) and the application layer
(OSI - Layer 7) in the OSI model.


https://blogs.bmc.com/blogs/osi-model-7-layers/

@:n ?La yers

of the OSI Model

5 Apbli . e End User layer
- Application e HTTP, FTP, IRC, SSH, DNS

e Syntax layer
e SSL, SSH, IMAP, FTP, MPEG, JPEG

e Synch & send to port
e API's, Sockets, WinSock

@ 4T e End-to-end connections
> ransport e TCP, UDP

. XN c e Packets
@ - Networ e |P, ICMP, IPSec, IGMP

[% X |_' k e Frames
.. . Data Lin e Ethernet, PPP, Switch, Bridge

e Physical structure

e Coax, Fiber, Wireless, Hubs, Repeaters

The application layer routing is preferred over simple transport layer routing because it offers
greater control, such as load balancing external traffic based on requests. The Ingress controllers
are neither automatically started with a Kubernetes cluster nor a part of the default "kube-controller-
manager" binary.

Kubernetes offers built-in support for AWS, GCE, and nginx ingress controllers and also supports
integration with third-party ingress controllers. The choice of the Ingress controller depends on:

e Your application requirements
* The host environment

Simply put, the Ingress controller is an application that runs within the Kubernetes cluster and


https://github.com/kubernetes-sigs/aws-load-balancer-controller#readme
https://github.com/kubernetes/ingress-gce/blob/master/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme

provisions a load balancer according to the requirements of Ingress. (The load balancer can be a
software load balancer, external hardware load balancer, or cloud load balancer, each type
requiring different controller implementations.)

Ingress vs alternatives for exposing services

Using Ingress is not the only way to expose services.

A Kubernetes service resource provides an abstract way to expose a set of targeted application
pods as a network service. At the same time, Kubernetes uses ClusterlP, NodePort, and Load
Balancer methods to expose services both internally within nodes and externally outside the cluster.

e ClusterlP is the default service type that exposes services using an internal cluster IP. This
method exposes only the service within the cluster and is unreachable externally.

* NodePort exposes the service using a static port associated with the desired node. NodePort
configuration will automatically create the ClusterlP to route the traffic internally. Users can
access the service externally by using the IP address of the node and the exposed port.

* LoadBalancer exposes the service using the cloud provider's load balancer and automatically
creates the necessary NodePorts and ClusterlIPs to route the desired traffic.

(Learn about NodePort, Port & TargetPort.)

Individually exposing and managing services is inefficient and not scalable in large Kubernetes
clusters. That's how Ingress becomes the ideal solution—by acting as the entry point for the whole
Kubernetes cluster. This enables users to:

e Manage all the routing rules from a centralized resource
* Expose multiple services under a single IP address

Creating an Ingress resource

Now let's have a look at how to create an Ingress resource.

As with any other resource in Kubernetes, Ingress resource also consists of apiVersion, kind, and
metadata fields with the desired rules and configurations under the spec section.

Simple Ingress configuration

apiVersion: networking.k8s.1io/vlbetal
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/app-root: /test app
name: testapproot
namespace: default
spec:
rules:
- host: testapproot.mycluster.com
http:
paths:


https://blogs.bmc.com/blogs/osi-model-7-layers/
https://blogs.bmc.com/blogs/osi-model-7-layers/
https://blogs.bmc.com/blogs/osi-model-7-layers/
https://blogs.bmc.com/blogs/kubernetes-port-targetport-nodeport/

- backend:
serviceName: http-svc
servicePort: 80
path: /

When defining an ingress resource, the name of the ingress object needs to adhere to valid
subdomain DNS naming conventions. Furthermore, annotations can be used to configure ingress
resources with specific options. In the above YAML file, we use the
"nginx.ingress.kubernetes.io/app-root" option to define the application root that the ingress
controller needs to redirect when the root path is called (path: /).

Different types of ingress controls will include different annotation support, and the user needs to
modify the annotations to suit the desired controller.

INGRESS RULES

Ingress rules are the core of Kubernetes Ingress. They define what happens to the incoming traffic
and to which services that traffic should be directed. Each HTTP rule consists of multiple fields to
define the rule properly.

* Host is an optional parameter that defines which host the rule gets applied. When the host
parameter is not defined, the rule is applied to all incoming HTTP traffic.

e Paths refers to the list of paths that are associated with a backend. Both the host and path
should match to route the traffic to the desired service properly.

e Backend is the destination to which the incoming traffic should be ultimately directed. This can
be a Kubernetes service or a custom resource backend to indicate another resource under the
same namespace (e.g., storage bucket).

Any request that does not match any of the defined rules will be directed to the default backend.
This default backend is a part of the ingress controller itself and not specified in the ingress
resource.

Defining multiple Ingress rules

Now that we have a better understanding of the ingress resource, we can see how to define
multiple ingress rules with different hosts and backends.

apiVersion: networking.k8s.1io/vlbetal
kind: Ingress
metadata:
name: myapp
spec:
rules:
- host: "app.mycluster.com"
http:
paths:
- pathType: Prefix
path: “/home"
backend:


https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme

serviceName: http-app
servicePort: 80
- pathType: Prefix
path: "/admin"
backend:
serviceName: http-app
servicePort: 8080
- host: "data.mycluster.com"”
http:
paths:
- pathType: Prefix
path: "/charts"
backend:
serviceName: http-charts
servicePort: 81

In the above configuration, we have configured three routing rules for two different hosts that
consume different services.

host: "app.mycluster.com"

This section consists of two rules that only apply to traffic directed to app.mycluster.com. If the URL
path matches either /home or /admin, the traffic will get directed to different ports of the same
service.

host: "data.mycluster.com”

The single rule configured will apply to traffic directed at data.mycluster.com host, and if the URL
path matches /charts, it will direct the traffic to port 81 of the "http-charts” service.

Kubernetes Ingress path types

When defining rules, the path must include a corresponding path type to validate the rules properly.
Kubernetes has three path types:

e This matches the configurations of an IngressClass defined in an Ingress Controller. It will be
treated as a separate path type or the same as Prefix or Exact types, depending on the
implementation of the class.

e WWe can use this type when the user needs to match a URL path exactly with case sensitivity.

e This will match the URL based on the path prefix split by the forward-slash (/). This is also case
sensitive, and the matching process is done from element to element in the URL.

Let's now look at some path matching scenarios.

Path Type Path Sample Request Match
Exact /test www.example.com/test Yes
Exact /test www.example.com/test/ No

www.example.com/test

www.example.com/test/ Yes (Both URLSs)

Prefix /test


https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme

Prefix /test/user www.example.com/test/us No

In instances where multiple matches are available for a request, the request with the longest
matching path will be given preference. If both paths are an exact match, the ingress controller will
select the exact path type over the prefix to apply the necessary ingress rule.

(Dive deeper into all the matching scenarios in the official Kubernetes documentation.)

Types of Ingress

There are three types of Ingress in Kubernetes;

* Single service. This is Ingress backed by a single service where a single service is exposed. To
define this, specify a default backend without any rules.

» Simple fanout. The fanout type is where a single entry point (single IP address) is used to
expose multiple services. There, URL traffic gets routed to the desired destination depending
on the request. This method allows users to reduce the humber of load balancers and easily
manage the routing within the cluster.

« Name-based virtual hosting. This method can be used to route traffic from a single entry (IP
address) to different hosts within the cluster. Here, the traffic is first targeted towards a
specified host before any other routing is done.

Users can secure an ingress by specifying a secret with a supported TLS key and a certificate. The
ingress resource supports a single TLS port (443) and assumes TLS termination at the ingress point.
Then the internal communications happen via plain text.

Manage services better, with improved security

Kubernetes Ingress provides a unified resource to manage and route traffic to your applications in a
Kubernetes cluster without having to manage services and load balances manually.

Related reading

e BMC DevOps Blog

Kubernetes Best Practices for Enhanced Cluster Efficiency

How Containers & Kubernetes Work Together

Kubernetes vs Docker Swarm: Comparing Container Orchestration Tools
Docker Security: 14 Best Practices for Securing Docker Containers

The State of Containers Today: A Report Summary



https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/kubernetes-best-practices/
https://blogs.bmc.com/blogs/containers-vs-kubernetes/
https://blogs.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://blogs.bmc.com/blogs/docker-security-best-practices/
https://blogs.bmc.com/blogs/state-of-containers/

