
KUBERNETES DEPLOYMENTS FULLY EXPLAINED

Kubernetes Deployment is the process of providing declarative updates to Pods and ReplicaSets. It
allows users to declare the desired state in the manifest (YAML) file, and the controller will change
the current state to the declared state.

So, let’s look at how to create and use Kubernetes deployments. I’ll walk you through how to utilize
Kubernetes deployments to simplify the deployment process and manage, scale, and roll back
deployments.

For the purpose of this article, we will be using a locally deployed Kubernetes cluster in a Windows
environment utilizing the Windows Subsystem for Linux (WSL).

(This article is part of our Kubernetes Guide. Use the right-hand menu to navigate.)

Creating a Kubernetes deployment
Let’s first create a simple Nginx deployment with four replicas. Like any other Kubernetes
configuration, a deployment file will contain:

apiVersion (apps/v1)
Kind (Deployment)
The metadata with a spec section to define the replicas and configurations related to the
deployment

nginx-deployment.yaml

apiVersion: apps/v1

https://blogs.bmc.com/blogs/kubernetes-pods/
https://blogs.bmc.com/blogs/kubernetes-replicaset/
https://blogs.bmc.com/blogs/what-is-kubernetes/

kind: Deployment
metadata:
 # Define the Deployment Name
 name: nginx-deployment
 labels:
 app: webserver
spec:
 # Define the Number of Pods
 replicas: 4
 # Define the Selector
 selector:
 matchLabels:
 app: webserver
 template:
 metadata:
 labels:
 app: webserver
 spec:
 containers: # Container Details
 - name: nginx
 image: nginx:latest # Image
 ports:
 - containerPort: 80

We can create the deployment using the following command. We have added the --record flag to
save the command.

kubectl apply -f nginx-deployment.yaml --record

Result:

We have defined the following entries in the metadata and specs sections of the above deployment
file.

The deployment name and a label (app: webserver).
The number of replicas (pods), the selector in which the controller will select the targeted
pods. (The label is used to select the necessary pods using the matchLabels field.) The
template section contains the actual template for the pod. This section defines the metadata
that each pod will have with the specs (container definition). In this instance, we have defined
the Nginx image and the container port as 80.

If we check the Kubernetes cluster after some time, we can see that the Pods are deployed with the
given template. Additionally, we can retrieve details of the deployment using the describe
command.

kubectl get all

Result:

kubectl describe deployment nginx-deployment

Result:

Exposing the ReplicaSet
Now we have created a deployment and need to verify if the Nginx web servers were deployed
correctly.

The straightforward way to achieve this is to create a service object that exposes the deployment.
An important fact to note here is that the way we expose the deployment and the parameters can
vary depending on the configurations of the Kubernetes cluster.

kubectl expose deployment nginx-deployment --type=LoadBalancer --name=nginx-
web-server

Result:

kubectl get services

Result:

Then we can navigate to the localhost port 80 to check if we can see the default Nginx server
landing page as below.

Discovering the Kubernetes deployment details
When managing a Kubernetes cluster, the initial step would be to check for a successful
deployment. For this purpose, we can use the kubectl rollout status and kubectl get deployment
commands.

kubectl rollout status informs the user if the deployment was successful.
kubectl get deployment shows the desired and updated number of replicas, the number of
replicas running, and their availability. As mentioned previously, we can use the kubectl
describe command to a complete picture of the deployment.

kubectl rollout status deployment nginx-deployment
kubectl get deployment nginx-deployment

Result:

We can fetch information about the ReplicaSets created during deployment using the kubectl get
ReplicaSet command.

By default, Kubernetes will automatically append a pod-template-hash value to the ReplicaSet
name. However, do not rename the ReplicaSet as it will break the deployment.

kubectl get replicaset

Result:

The kubectl get pod command can be used to get only the information about the pods related to
the deployment while defining a selector. In this instance, we will be using the “app:webserver” label
as the selector.

kubectl get pod --selector=app=webserver

Result:

Managing Kubernetes deployments
Now we know how to create a deployment and retrieve information about the said deployment. The
next stage is to manage the deployment. What differentiates deployments from a simple ReplicaSet
is that deployments enable users to update the pods (pod templates) without causing any
interruption to the underlying application.

Performing Rolling Update on a deployment
Let’s assume that we need to change the Nginx server version in our deployment to target our
application to a specific server version. We can do this by either:

Using the kubectl set image command
Changing the deployment configuration file

Using the set image command
The set image command can be used with the container name of the template and the required
image name to update the pods.

kubectl set image deployment nginx-deployment nginx=nginx:1.19.10

Result:

We will get the rollout process if we run the get rollout status command immediately.

kubectl rollout status deployment nginx-deployment

Result:

Changing the deployment configuration file
We can use the edit deployment command to edit the configuration file. Navigate the relevant
section (container image) and make necessary changes. Kubernetes will start the process of
updating the pods the moment we save the new configuration.

kubectl edit deployment nginx-deployment

Deployment Edit View (nginx-deployment):

Deployment strategies
Kubernetes uses two deployment strategies called “Recreate” and “RollingUpdate” to recreate pods.
We can define those strategies in .spec.strategy.type field. The RollingUpdate strategy is the default
for deployments.

Recreate will delete all the existing pods before creating the new pods.
RollingUpdate will recreate the pods in a rolling update fashion. Moreover, it will delete and
recreate pods gradually without interrupting the application availability. This strategy utilizes
the maxUnavailable and maxSurge values to control the rolling update process..

maxUnavailable defines the maximum number of pods that can be unavailable in the
update process.
maxSurge defines the maximum number of pods that can be created.

In our deployment, we haven’t explicitly defined a strategy so that Kubernetes will use the default
RollingUpdate strategy. We can use the describe command to verify the current strategy for the
deployment.

kubectl describe deployment nginx-deployment | grep Strategy

Result:

From the above output, we can discern that the default configurations for the RollingUpdate

strategy are 25% for max unavailable and 25% for the max surge values. We are creating four replicas
in our configuration. According to the above configuration in the update process, a single pod will
get destroyed while a single pod is created (25% of 4 is 1).

We can view the Events in the deployment using the describe command to gain a better
understanding of the update process.

kubectl describe deployment nginx-deployment

Result:

If we look at the current ReplicaSet, we can notice that it has four pods whereas the old ReplicaSet
does not contain any pods.

kubectl get replicasets

Result:

Pausing & resuming deployments
Kubernetes deployments provide the ability to pause and resume deployments. This enables users
to modify and address issues without triggering a new ReplicaSet rollout.

We can use the “rollout pause deploy” command to pause the deployment.

kubectl rollout pause deploy nginx-deployment

Result:

Now, if we update the Nginx image in the paused status, the controller will accept the change, yet it
will not trigger the new ReplicaSet rollout. If we look at the rollout status, it will indicate a pending
change.

kubectl set image deployment nginx-deployment nginx=nginx:1.20 --record
kubectl rollout status deployment nginx-deployment

Result:

You can simply run the “rollout resume deploy” command to resume the deployment.

kubectl rollout resume deploy nginx-deployment
kubectl rollout status deployment nginx-deployment

Result:

Scaling deployments
As the Deployments rely on ReplicaSets to manage the pods, we can scale up or down the number
of pods. This scaling can be done either:

Manually
By configuring an auto-scaling rule

Manual scaling
We can use the scale command with the replica parameter to scale the deployment to the desired
number. For instance, we will use the following command to scale up our deployment from 4 pods
to 8 pods.

kubectl scale deployment nginx-deployment --replicas=8
kubectl rollout status deployment nginx-deployment

Result:

If we look at the pods associated with this deployment, we can see that it has eight pods now.

kubectl get pod --selector=app=webserver

Result:

Autoscaling
The best practice for scaling deployments would be to configure an auto-scaling rule so that the
pods will scale according to predefined thresholds.

So, let’s go ahead and create an autoscaling rule for our deployment, which will scale according to
the CPU load of the node.

kubectl autoscale deployment nginx-deployment --min=5 --max=10 --cpu-
percent=70

Result:

According to the above configuration, if the CPU load is greater than 70%, the deployment will scale
until the maximum number of pods is reached (maximum ten pods). On the other hand, it will scale
back gradually until there are five pods (minimum five pods) when the load is reduced.

Rolling back a deployment
Kubernetes also supports rolling back deployments to the previous revision. This is a crucial feature
enabling users to undo changes in deployment.

For instance, if a critical production bug was deployed to the cluster, we can simply roll back the
deployment to the previous revision easily with no downtime until the bug is fixed.

https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/

Let’s assume that we have updated our configuration with an incorrect image. (We will be using the
caddy webserver in this example.)

kubectl set image deployment nginx-deployment nginx=caddy:latest --record

Result:

This is where the Deployment controller’s history function comes into play. The controller keeps
track of any changes to the pod template and keeps them in history. When we specify the record
flag in a command, it will be reflected in the history.

kubectl rollout history deployment nginx-deployment

Result:

We can use the revision number to inform the deployment controller to roll back our deployment to
the previous revision.

First, let’s verify if the revision we are going to roll back is the correct deployment. Here, we are
trying to roll back to the third revision. Simply specify the revision in the history command to get the
details of the indicated revision.

kubectl rollout history deployment nginx-deployment --revision=3

Result:

After confirming the revision, we can utilize the “kubectl rollout undo” command with the “to-
revision” parameter to roll back the deployment.

kubectl rollout undo deployment nginx-deployment --to-revision=3

kubectl rollout status deployment nginx-deployment

Result:

That’s it! Now we have successfully rolled back the deployment.

After the rollback, we won’t be able to see the third revision as we have deployed it as the current
configuration. However, we will be able to see a new record with a higher revision number for the
newly rolled back deployment.

kubectl rollout history deployment nginx-deployment

Result:

Summing up K8s deployments
In this article, we have only scratched the surface of the capabilities of Kubernetes deployments.
Users can create more robust containerized applications to suit any need by combining
deployments with all the other Kubernetes features.

Related reading
BMC DevOps Blog
Kubernetes Guide, with 20+ articles and tutorials
Bring Kubernetes to the Serverless Party
Kubernetes vs Docker Swarm: Comparing Container Orchestration Tools
The State of Containers Today: A Report Summary

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/bring-kubernetes-to-the-serverless-party/
https://blogs.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://blogs.bmc.com/blogs/state-of-containers/

