
CREATING & USING CONFIGMAPS IN KUBERNETES

In programming, we use env files or separate configuration files to store settings, configurations, or
variables that are required to execute the program. In Kubernetes, we can use ConfigMaps to
achieve the same functionality.

To understand ConfigMap properly, you should have some knowledge of Kubernetes, pods, and
basic Kubernetes cluster management.

(This article is part of our Kubernetes Guide. Use the right-hand menu to navigate.)

What is a ConfigMap?
A ConfigMap is a Kubernetes API object that can be used to store data as key-value pairs.
Kubernetes pods can use the created ConfigMaps as a:

Configuration file
Environment variable
Command-line argument

ConfigMaps provides the ability to make applications portable by decoupling environment-specific
configurations from the containers.

Importantly, ConfigMaps are not suitable for storing confidential data. They do not provide any kind
of encryption, and all the data in them are visible to anyone who has access to the file. (Kubernetes
provides secrets that can be used to store sensitive information.)

Another consideration of ConfigMaps is the size of the file, as we are trying to store application

https://blogs.bmc.com/blogs/kubernetes-best-practices/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/kubernetes-pods/
https://blogs.bmc.com/blogs/kubernetes-secrets/
https://blogs.bmc.com/blogs/kubernetes-secrets/

configuration ConfigMap files limited to 1MB. For larger data sets, it's better to use separate file
mounts, databases, or file services.

ConfigMap example
kind: ConfigMap
apiVersion: v1
metadata:
 name: example-configmap
 namespace: default
data:
 # Configuration Values are stored as key-value pairs
 system.data.name: "app-name"
 system.data.url: "https://app-name.com"
 system.data.type_one: "app-type-xxx"
 system.data.value: "3"
 # File like Keys
 system.interface.properties: |
 ui.type=2
 ui.color1=red
 ui.color2=green

In a ConfigMap, the required information can be stored in the data field. We can store values in two
ways:

As individual key pair properties
In a granular format where they are fragments of a configuration format. (File Like Keys)

How to create ConfigMaps
ConfigMaps and pods go hand in hand as ConfigMaps can be used as environment variables and
configuration information in a Kubernetes pod.

In this section, we will have a look at how to create ConfigMaps. Here are some notes before we get
started:

We will be using a windows environment with the windows subsystem for Linux (Ubuntu) as
the terminal environment.
The Docker desktop will be configured to facilitate a Kubernetes environment.
We will be using the official sample files provided by Kubernetes to demonstrate the
functionality of ConfigMap.

Creating ConfigMaps from directories
We can use the following command to create ConfigMap directories.

kubectl create configmap

It will look for appropriate files (regular files) within a specific directory that can be used to create a
ConfigMap while ignoring any other file types (hidden files, subdirectories, symlinks, etc.)

First, let's create a directory using this command:

mkdir configmap-example

Then we'll download the required
sample files to the directory. These files will be used to generate the ConfigMap.

wget https://kubernetes.io/examples/configmap/game.properties -O configmap-
example/game.properties

wget https://kubernetes.io/examples/configmap/ui.properties -O configmap-
example/ui.properties

Now let's have a look at the file contents using the following commands.

cat game.properties
cat ui.properties

When creating ConfigMaps using directories, the most important factor is that you have to correctly
define the key-value pairs within each file.

After that, let's create the ConfigMap using the create configmap command.

kubectl create configmap game-config-example --from-file=configmap-example/

This command will package the files within the specified directory and create a ConfigMap file. We
can use the kubectl describe command to view the ConfigMap file.

kubectl describe configmaps game-config-example

We can get the ConfigMap in YAML format using the following command.

kubectl get configmaps game-config-example -o yaml

Creating ConfigMaps from files
In the same way we created ConfigMaps using directories, we can also create ConfigMaps using
files by using the --from-file parameter to point to a single file in the kubectl create configmap
command. So, let's create a ConfigMap using the game.properties file as shown below.

kubectl create configmap game-config-example-2 --from-file=configmap-
example/game.properties

kubectl describe configmap game-config-example-2

We can define multiple --from-file arguments multiple times to create a single ConfigMap file using
several different files.

kubectl create configmap game-config-example-2 --from-file=c

Creating ConfigMaps from an environment file
Kubernetes allows users to create ConfigMaps using env files. We can use the --from-env-file
argument when defining an env file. This argument can also be used multiple times to define
multiple env files.

When using env files, each line should adhere to the <name>=<value> format. Empty lines and
comments will be ignored, while quotation marks will be a part of ConfigMap.

cat configmap-example/game-env-file.properties

kubectl create configmap game-config-env-file-example --from-env-
file=configmap-example/game-env-file.properties

kubectl get configmap game-config-env-file-example -o yaml

Creating ConfigMap from a file with a predefined key
When creating a ConfigMap, we can use the following format in --from-file argument to define a key
name that will overwrite the file name used in the data section.

The following example demonstrates how to define a key
while creating a ConfigMap.

kubectl create configmap game-config-key-example --from-file=game-key-
example-data=configmap-example/game.properties

kubectl get configmap game-config-key-example -o yaml

Creating ConfigMaps from values
Another way to create ConfigMaps is to provide literal values as parameters in the create configmap
command. For this, we can use the --from-literal argument to pass each key pair. This is especially
handy when we need to create ConfigMaps on the fly.

kubectl create configmap config-example-values --from-
literal=example.value=one --from-literal=example-type=2 --from-
literal=example.url="http://example.com"

kubectl get configmap config-example-values -o yaml

Utilizing ConfigMaps in pods
Now we have a basic understanding of how to create ConfigMaps. The next step is to use the
created ConfigMaps for creating a Pod. In this section, we will create a simple ConfigMap and use it
when creating a pod in Kubernetes.

As the first step, let's create a file named "app-basic.properties" and include two key-value pairs.

app-basic.properties

system.type="TESTING CONFIGMAP"
system.number=12345

We will create a ConfigMap named "app-basic-configmap" using the above file and the --from-file
option.

kubectl create configmap app-basic-configmap --from-file=configmap-
example/app-basic.properties

kubectl get configmap app-basic-configmap -o yaml

Finally, let's create a Pod referencing the newly created ConfigMap. We will be using the following
YAML file to create the Pod.

example-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: configmap-example-pod
spec:
 containers:
 - name: configmap-example-busybox
 image: k8s.gcr.io/busybox
 command:
 envFrom:
 # Load the Complete ConfigMap
 - configMapRef:

 name: app-basic-configmap
 restartPolicy: Never

As you can see from the above example, We are going to load the complete ConfigMap we created
to the Kubernetes Pod.

kubectl create -f example-pod.yaml
kubectl get pods

kubectl logs configmap-example-pod | grep system.number

The above result
indicates that the ConfigMap "app-basic-configmap" was successfully loaded when creating the
Kubernetes Pod.

Mapping keys from ConfigMaps to pods
Another way we can use ConfigMaps is to directly map values from ConfigMaps to the specific
environmental variables in the Pod.

In this section, we will create two simple configmap files manually and load and map the values
directly to the Kubernetes Pod. There, we will define the ConfigMaps as YAML files and then use the
kubectl create command to generate the ConfigMaps.

application-defaults.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: application-configs
 namespace: default
data:
 app.value: "45000"
 app.type: test-application
 app.ui: web

application-logs.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: application-log-configs

 namespace: default
data:
 log_level: WARNING
 log_type: TEXT

kubectl create -f application-defaults.yaml
kubectl create -f application-logs.yaml

example-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: configmap-example-pod
spec:
 containers:
 - name: configmap-example-busybox
 image: k8s.gcr.io/busybox
 command:
 env:
 - name: APPLICATION_TYPE
 valueFrom:
 configMapKeyRef:
 name: application-configs
 key: app.type
 - name: APPLICATION_UI_TYPE
 valueFrom:
 configMapKeyRef:
 name: application-configs
 key: app.ui
 - name: LOG_LEVEL
 valueFrom:
 configMapKeyRef:
 name: application-log-configs
 key: log_level
 restartPolicy: Never

In this configuration, we are mapping environmental variables to values within each ConfigMap.

The following is the basic structure for mapping a value. In the environment section in the YAML file,
we define a variable name and reference the ConfigMap via the "configMapKeyRef" element using
the "valueFrom." Here we will provide:

The ConfigMap name
The key where the value should be mapped from

Next, we will
create the Pod using the kubectl create command as shown below.

kubectl create -f example-pod.yaml
kubectl get pods

After
successfully creating the Pod, we can explore the environment variables as shown below.

kubectl logs configmap-example-pod | grep APPLICATION_TYPE
kubectl logs configmap-example-pod | grep APPLICATION_UI_TYPE
kubectl logs configmap-example-pod | grep LOG_LEVEL

The
above results indicate that the values were correctly mapped to environment variables with custom
names within the Kubernetes pod.

ConfigMap defined environment variables in pod commands
Another way we can utilize ConfigMap defined environmental variables is by using them in Pod
Commands. This can be done for both the command and args elements in a YAML file using the
$(VARIABLE_NAME) Kubernetes substitution syntax.

The following code block demonstrates how to use these environment variables in the command
element using example-pod.yaml as the base.

apiVersion: v1
kind: Pod
metadata:

 name: configmap-example-pod
spec:
 containers:
 - name: configmap-example-busybox
 image: k8s.gcr.io/busybox
 command:
 env:
 - name: APPLICATION_TYPE
 valueFrom:
 configMapKeyRef:
 name: application-configs
 key: app.type
 - name: APPLICATION_UI_TYPE
 valueFrom:
 configMapKeyRef:
 name: application-configs
 key: app.ui
 - name: LOG_LEVEL
 valueFrom:
 configMapKeyRef:
 name: application-log-configs
 key: log_level
 restartPolicy: Never

In this instance, the environmental variables are identified at the execution of the command (at the
container start), and they will be directly displayed in the terminal.

Adding ConfigMap data to a volume
Users can consume ConfigMaps by mounting the ConfigMap data into a Kubernetes volume. In the
following example, we are mounting the “application-log-config” ConfigMap data to a volume called
“config-volume” mounted in “/etc/config” in the container. Then we have configured a command
that would list all the files within the /etc/config directory.

apiVersion: v1
kind: Pod
metadata:
 name: configmap-example-volume-pod
spec:
 containers:
 - name: configmap-volume-example-busybox
 image: k8s.gcr.io/busybox
 command:
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume

 configMap:
 name: application-log-configs
 restartPolicy: Never

Mounted ConfigMaps are automatically updated. Kubelt will periodically check if the mounted
ConfigMap is up to date and update the mount accordingly. However, this auto-update mechanism
does not apply to volumes mapped as a SubPath volume.

That concludes this tutorial. Explore more Kubernetes topics with the right-hand menu.

ConfigMaps are essential to K8s clusters
In this article, we have learned about Kubernetes ConfigMaps, including multiple ways that can be
used to create ConfigMaps and how to utilize ConfigMaps in a Kubernetes Pod. ConfigMaps are an
essential part of any Kubernetes cluster, providing a robust method to store simple and frequently
accessed application or container data.

Related reading
BMC DevOps Blog
Kubernetes Guide, with 20+ tutorials
Kubernetes Certifications: How & Why to Get Certified
The 12-Factor App Methodology Explained
How & Why To Become a Software Factory

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/kubernetes-certifications/
https://blogs.bmc.com/blogs/twelve-factor-app/
https://blogs.bmc.com/blogs/software-factory/

