SPARK'S MACHINE LEARNING PIPELINE: AN INTRODUCTION

Here we explain what is a Spark machine learning pipeline. \¥/e will do this by converting existing
code that we wrote, which is done in stages, to pipeline format. This will run all the data
transformation and model fit operations under the pipeline mechanism.

The existing Apache Spark ML code is explained in two blog posts: part one and part two. You are
encouraged to read that first as you will need to do that to generate data to feed into this program.
Plus you will understand what we have changed and thus learn the pipeline concept. (Or if you want
to take a shortcut and skip reading that you could just use the maintenance_data.csv as both the
test and training data.)

The Spark pipeline object is org.apache.spark.mL{Pipeline, PipelineModell

(This tutorial is part of our Apache Spark Guide. Use the right-hand menu to navigate.)

In general a machine learning pipeline describes the process of writing code, releasing it to
production, doing data extractions, creating training models, and tuning the algorithm. It should be a
continuous process as a team works on their ML platform. But for Apache Spark a pipeline is an
object that puts transform, evaluate, and fit steps into one object org.apache.spark.mL.Pipeline.
These steps are called a workflow. (Presumably there are some performation, distribution. or other
benefits to doing this, but the Spark documentation does not spell that out.) But at least it mimics the
pipeline from, at least regarding the data transformation operations.

To start, we look at the graphic supplied by Apache Spark. Basically you start with creating a
dataframe then you put any transformation steps into the pipeline object plus the ML algorithm you
will use.

https://www.bmc.com/blogs/how-to-use-apache-spark-to-make-predictions-for-preventive-maintenance/
https://blogs.bmc.com/blogs/introduction-to-sparks-machine-learning-pipeline/

(Estimator) Tokenizer | ™ | HashingTF | = Regression

Logistic

. = . —> . —> Regrgession
Pipeline.fit() Raw Words Feature Model

text vectors In other words, in
the graphic above the dataframe is created through reading data from Hadoop or whatever and
then transform() and fit() operations are performed on it to add feature and label columns, which is
the format required for the logistic regression ML algorithm. The discrete several steps are fed into
the pipeline object. Transform means to modify a dataframe, such as adding features and labels
columns. Fit means to feed the dataframe into the ML algorithm and then calculate the answer, i.e
create the model. You can also run transform directly on a dataframe. In a sense this is what the
pipeline does for us.

With regards to the graphic above, the code shown below shows how that is implemented. Each of
these three steps will be handled by the pipeline object in: val pipeline = new
Pipeline().setStages(Array(tokenizer, hashingTF, Lr)).

val tokenizer = new Tokenizer()
.setInputCol("text")
.setQutputCol("words")

val hashingTF = new HashingTF ()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")

val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.001)

val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, 1r))

To illustrate using our own code, we rewrite the code from the blog posts mentioned above, which
was two separate programs (create model and make predictions) into one program shown here.

First we have the usual imports.

import org.apache.spark.sql.SQLContext

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import com.databricks.spark.csv

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.mllib.linalg.{Vector, Vectors}

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{VectorAssembler, StringIndexer}
import org.apache.spark.ml.classification.LogisticRegressionModel
import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.sql.Row

https://github.com/werowe/preventiveMaintenanceLogitReg/blob/master/pipeline.scala

Next, we first read in the dataframe from a text file as usual but instead of performing transform()
operations by themselves on the dataframe, we feed the VectorAssembler(), Stringlndexer(), and
LogisticRegression() into new Pipeline().setStages(Array(assembler, labellndexer, lr)). Then we
run pipeline.fit() on the original dataframe. The pipeline knows what transformations to run and in
which order because we specified that here .setStages(Array(assembler, labellndexer, lr)). At the
end we have our trained model.

Again, here is the old code. After that is the new.

val df2

assembler.transform(df)

val df3

labelIndexer.fit(df2).transform(df2)

val model = new LogisticRegression().fit(df3)
New code

var file = "hdfs://localhost:9000/maintenance/maintenance data.csv";
val sqlContext = new SQLContext(sc)

val df = sqlContext.read.format("com.databricks.spark.csv").option("header",
"true").option("inferSchema", "true").option("delimiter",";").load(file)

val featureCols = Array("lifetime", "pressureInd", "moistureInd",
"temperatureInd")

val assembler = new
VectorAssembler().setInputCols(featureCols).setOutputCol("features")

val labellIndexer = new
StringIndexer().setInputCol("broken").setOutputCol("Llabel")

val lr = new LogisticRegression()
val pipeline = new Pipeline().setStages(Array(assembler, labelIndexer, 1r))

val model = pipeline.fit(df)

Now the predictions are easy. The model already knows what transformations to run. So we just
read in the test data (You created that in blog post part one.) and run transform() on it. Then we filter
those whose logistic regression value is > 0, i.e., 1, the print out those machines that require
maintenance

var predictFile = "hdfs://localhost:9000/maintenance/2018.05.30.09.46.55.csv"

val testdf =
sglContext.read.format("com.databricks.spark.csv").option("header",
"true").option("inferSchema", "true").option("delimiter",";").load(file)

val predictions = model.transform(testdf)

predictions.select("team", "provider", "prediction").filter($"prediction" >
0).collect().foreach { case Row(team: String,provider: String, prediction:
Double) =>

println(s"($team, $provider, $prediction) --> team=$team,
provider=$provider, prediction=%$prediction")

}

The results look like this:

(TeamA, Provider4, 1.0) --> team=TeamA, provider=Provider4, prediction=1.
(TeamC, Provider2, 1.0) --> team=TeamC, provider=Provider2, prediction=1.
(TeamC, Provider4, 1.0) --> team=TeamC, provider=Provider4, prediction=1.
(TeamB, Providerl, 1.0) --> team=TeamB, provider=Providerl, prediction=1.
(TeamC, Provider2, 1.0) --> team=TeamC, provider=Provider2, prediction=1.
(TeamB, Provider2, 1.0) --> team=TeamB, provider=Provider2, prediction=1.
(1

TeamA, Provider2, 1.0) --> team=TeamA, provider=Provider2, prediction=1.

[l oNoNoNONONO]

