JUPYTER NOTEBOOKS FOR DATA ANALYTICS: A BEGINNER'S
GUIDE

The importance of data analytics is steadily growing across all industries. Having proper data
analytics and visualizations tools has become more important than ever. Jupyter Notebooks is one
of the leading open-source tools for developing and managing data analytics.

Jupyter initially started its life as an offshoot of the iPython project in 2014, and it's evolved into a full-
fledged interactive data science platform. Managed by the non-profit Project Jupyter organization,
Jupyter aims to provide the most comprehensive data science platform.

In this article, we'll show you how to set up and configure a local Jupyter environment. You can use
this tutorial as the perfect starting point for beginning data analytics work.

What is a Jupyter Notehook?

Jupyter Notebook is an open-source web application that provides an interactive computational
environment. It produces documents (hotebooks) that combine both inputs (code) and outputs into a
single file. It offers a single document that contains:

* Visualizations

* Mathematical equations
e Statistical modeling

* Narrative text


https://blogs.bmc.com/blogs/data-analytics-vs-data-analysis/
https://blogs.bmc.com/blogs/data-visualization/
https://blogs.bmc.com/blogs/big-data-vs-analytics/

e Any other rich media

This single document approach enables users to develop, visualize the results and add information,
charts, and formulas that make work more understandable, repeatable, and shareable.

Jupyter notebooks support more than 40 programming languages, with a major focus on Python.
Since it is a free and open-source tool, anyone can use it freely for their data science projects. There
are two variants of the Jupyter notebook:

« Jupyter Classic Notebook, with all the capabilities mentioned above.

e JupyterLab, a new next-generation notebook interface designed to be much more extensible
and modular, with support for a wide variety of workflows from data science, machine learning,
and scientific computing.

Today, JupyterLab is the default notebook for any Jupyter project.
(Get started with these Python tools.)

Installing Jupyter Notebook (JupyterLah)

There are multiple ways to install and use Jupyter Notebooks, ranging from installing via conda,
mamba, pip, pipenv, or even as a Docker container.

In this section, we discuss two methods of installing Jupyter Notebooks in your local environment.
(Please refer to the official documentation of Jupyter Notebook for all the installation methods.) We
will be using Windows as the operating system environment for setting up JupyterLab.

Install via Pipenv

Pipenv allows users to create a deterministic reproducible virtual environment with proper
dependency management for Python projects. As Jupyter comes as a pip package, we can simply
install it in this virtual environment.

First, let's create a folder that acts as the virtual environment. In this example, we have a folder
called "jupyter_notebook" which will be used to create the environment using Pipenv.

Simply run the following command to initiate this folder and set up the Python version to 3.8.
However, we can use any supported Python version for this.

pipenv --python 3.8


https://blogs.bmc.com/blogs/programming-languages/
https://blogs.bmc.com/blogs/python-big-data-analytics/
https://jupyterlab.readthedocs.io/en/latest/
https://blogs.bmc.com/blogs/python-tooling/
https://blogs.bmc.com/blogs/docker-101-introduction/
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://pipenv.pypa.io/en/latest/

B Windows PowerShell

PS G:\jupyter_notebook> pipenv

Creating a virtualenv for this project...

Pipfile: &:\jupyter_notebook‘\Pipfile

Using C:/Python/Python38/python.exe to create virtualenv...
[====] Creating virtual environment...

Virtualenv location:
Creating a Pipfile for this project...

Then run the following command to install the Jupyter package via pip:

pipenv install jupyterlab
PS G:\jupyter_notebook> pipenv install jupyterlab
Installing e
Adding to Pipfile's [packages]...
Installation Succeeded
Pipfile.lock not found, creating...
Locking [dev-packages] dependencies. ..
Locking [packages] dependencies...
Building requirements...
Resolving dependencies. ..

Updated Pipfile.lock (73f34e)!
Installing dependencies from Pipfile.lock (73f34e)...
B/ - DO:00:00
To activate this project’'s virtualenv, run pipenv shell.
Alternatively, run a command inside the virtualenv with pipenv run.

nally, we can run the JupyterlLab using the run command

pipenv run jupyter lab




run jupyter lab

“uarApp] The "min_open_files_limit" trait

an irt. .
P.117 ServerApp] nbclassic
0.118 LabApp] JupyterlLab e
ite-packag upyterlab
119 LabApp]

jupyterlab |
bH“vlng note
erverfpp] J
rverApp]

23 ServerApp]

p.124 ServerApp] Use Control-C to stop this serve

2021-07 9:08:50. 227 erApp]

To acce the se open this file in a br¢
file:///C: /L /bisin/AppData/Roaming/ jupy

f these URLs:
http://local 888/lab?tc

or http://127.0.0.1:8888/1lab?tc

Or copy and past
eleBBb/bfTB83b36a/b3b44938
7bff83b36a7b3b4493

fully linked.

bisin\AppData'Ro

of a ServerApp instance expect

\.virtualenvs\juputer

s\bisin\.virtualenvs\jupy

\jupyter_notebook

7bff83b36a7/b3b44938T861086

r and shut down all kernels (twic

After running the JupyterlLab, we will be able to access the JupyterlLab installation via the provided

URL (https.//localhost:8888).

= BN -

o .
b.]
A
o

fid
My
K
il

with:

* Any other Python project

This way, the Pipenv method offers an isolated JupyterLab environment to work without conflicting




e Settings
» Globally installed packages

Install via Anaconda data science toolkit

Anaconda is an open-source distribution of Python and R programming languages that aims to
simplify deployment and package management. It comes with its own:

e Package management system (conda)
¢ Virtual environment capabilities
» Software packages geared toward data science projects

The anaconda individual edition enables you to quickly set up a local data science environment by
simply installing the anaconda installation package.

Now, let's install Jupyter Notebook via Anaconda. First, navigate the Anaconda website and
download the appropriate Individual Edition installation package for your operating system
environment.

_) ANACONDA. Products Pricing Solutions Resources Blog Company Get Started

Q

Individual Edition

Your data science
toolkit .

With over 25 million users worldwide, the open-source Individual For Windows

Anaconda Individual Edition

. . - Python 5.8 « 64-Bit Graphical Installer = 477 MB
Edition (Distribution) is the easiest way to perform Python/R data

science and machine learning on a single machine. Developed for
solo practitioners, it is the toolkit that equips you to work with Gt AricliBcmall Installses
thousands of open-source packages and libraries ‘ | ‘ | A

S L e

Open Source Conda Packages Manage Environments

Then install the software in the local machine using the installer (exe package).


https://www.anaconda.com/
https://docs.conda.io/en/latest/

Anaconda3 2021.05 (64-bit) Setup

(64-bit) Setup

2021.05 (64-bit).

computer,

Click Mext to continue.,

") ANACONDA.

L ]
&
[ ]
5

2%

Mext =

Welcome to Anaconda3 2021.05

Setup will guide you through the installation of Anaconda3

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

Cancel

After that, open the

newly installed application called Anaconda Navigator once the installation is complete. It is the GUI
used to install applications and packages for the conda environment. You will notice that both
Jupyter Notebook and JupyterLab are available in the application section of Anaconda Navigator.



Ansconds Navigator

File Help

{0 ANACONDA NAVIGATOR 0 v NN

&

Appl (a:iopg on base (root) b Channels Refresh
‘ Environments -
e o o ]
aw >
L . A ~ -
W Learning *
Ve,
.
.. . CMD.exe Prompt Datalore IEM Watson Studio Cloud JupyterLab
an Community
0.1 1014
Fun a cmd.exe terminal with your current Online Data Analysis Tool with smart 18M Watson Studio Clowd provides you the An extensible environment fior interactive
enviranment from Mavigator activated coding assistance by Ja ins. Edit and ren tools to analyze and visualize data, to and reproducible computing, bas
your Pythan notebosks in the cloud and cleanse and shape dats, bo ereste and train Jupyter Motebook and Architackure
share them with your team machine learning medels. Prepare data and

build models, using open source data
science tools or wisual modeling.

=] =] B o]

ANACONDA e s
' — 2%
[ ] v
Jupyter A Py
; ’ .
Moktebook Powershell Prompt PyCharm Community Qt Console
Ds'_l:.rerl:':mi_m:n'_: 640 0.0 02113 R
science content Web-based, interactive computing Run 8 Powershell terminal with your An IDE by JetBrains For pure Python PyQt GUI bhat supports inline figures,
notebook envirgament. Edit and run currenk envirgnment from Mavigator development. Supports code completion, proper mulkiline editing with syntax
human-readable docs while descriking the activated listing, and debugging. highlighting, graphical calltips, and more.
Documentation data analysis

Anaconda Blog [ [ I

Yy & ¢ =

Next, select your preferred notebook type and install it. After that, click on the "Launch” button to
start the Jupyter Notebook. This will open a browser window with the notebook opened.

« lEN=- - k"
o - M| Not
- Hame Lawt Mo

-

A
* ni

W Do

-

-

- oo E )

- ot

o . (o

- e o

L v

-

- A E "

- -

- Op "

- - — M

= = ¢ B

- mont Teut e ]

- 1 a

-

-y

-

O

.l

O g

e

[ bis ; !

O b ! 1

™

D De

Srapls a EX ] ¥

By defaJlt, Juptyper will gain access to all the files and folders within the startup location. This is the
installation location for anaconda, whereas it's the folder location of the virtual environment for
Pipenv.



Creating a notebhook

Since we have completed the installation process, we can now move onto creating a Notebook.
Click on the notebook button on the home page of the JupyterLab web interface or navigate to File
-> New -> Notebook to create a hew notebook.

This will open a new untitled notebook called untitled.ipynb, where we can start coding our project.

: File Edit View Run Kernel Tabs Settings Help

[ [ +] + c A Untitled.ipynb O %
a B+ XOO0O » m Cc » Code v Python 3 (ipykernel) O %
© . | o &
.— Name - Last Modified
D Pipfile 4 hours ago
[ pipfilelock 4 hours ago

* - M untitled.ipy... seconds ago

Components of Jupyter notebook

In this section, we will cover the main components of the Jupyter notebook that are essential for
interacting with the Jupyter environment.

The ipynb file

The .ipynb file is the extension used to define a single notebook. This file contains all the data of your
notebook in JSON format. Moreover, it includes all the cell contents, image attachments as
converted strings, and metadata related to the notebook.

Let's create a simple notebook named test.ipynb and add a simple print statement there as shown
below.

M| test.ipynb o
B + ¥ 0O » m ¢ w» Code w Python 3 (ipykemnel) O #

print({“"Hello™)

Hello
data x = 18
data_y = 2@

print(data x + data y)

3@

INow,

if we open the test.ipynb file as a JSON file, we can see how all the information related to the
notebook is stored there.



1]
2 - "cells™: |

3+ |

= "cell type": "code",

5 "execution_count": 1,

L] "id": "b8cb3969-7c7e-426d-b754-33daefl162887",
7 "metadata™: {},

8- "outputs":

9 - 1

1@ "name”: "stdout”,

11 "output_type": "stream”,

12 -~ "text™: [

13 "Hello'n™

14 ]

15 }

16 ].l

17 - "source™: [

18 "primt{""Hello"")"

19 ]

28 1,

21 - [

22 "cell type": "code",

23 "execution count": null,

24 "id": "cf71B688-1ee5-4b54-9546-7bd5592885bf",
25 "metadata™: {7},

26 "ogutputs™: [],

27 "source™: []

28 }

29 1

3@ - "metadata™: |

31 - "kernelspec™: {

32 "display name": "Python 3 (ipykernel}"”,
33 "language": "python”,

24 "name": “python3”

35 1,

36 - "language _info™: |

a7 - "codemirror_mode": {

EH "name™: "ipython",

39 "version": 2

48 1,

Notehook kernel

Kernel acts as the brain of the notebook. Any code within a cell will be executed in the Kernel, and
the output is returned to the notebook. Kernel views the whole document (notebook) as a single
entity and maintains the state between cells.

In the following example, we have defined a variable (data_x) on a cell and accessed the same
variable in a separate cell for a simple addition calculation.



test.ipynb o
B+ X T O » m Cc » Code v Python 3 (ipykernel) O &

print({“"Hello™)

Hello
data x = 18
data_y = 2@

print{data_x + data_y)

38

If we
need to clear all the variables, we can simply restart the Kernel or use other options like "Restart and
Clear All Outputs® or "Run All Cells" depending on the required outcome. Further, we have the
interrupt option to stop the kernel if it is stuck due to a computational issue.

The kernel also dictates the programming language supported in the notebook ranging from Java,
Scala, R, Lua, etc. Moreover, users can install any supported kernel and use it to create a notebook.
Some kernels like the SoS kernel extend support for multiple languages in a single notebook.

Cells in a notehook

Cells are the building blocks of a notebook. Anything we do in a notebook, we do it within a specific
cell block. There are two types of cells in a notebook:

* Code cell. These cells contain the code that will be executed in the kernel. When the
notebook is executed, the resulting output will be shown below the code cell (outside the cell).
* Markdown cell. These cells contain the text content using Markdown. At the runtime, the result
will be generated at the place of the markdown cell.

Cell types:

def calculate(x, y):
return x + ¥y

total = calculate(5, 18)
print(total)

= e 5 ——
# Print Staotement

print(f'This is a Code Cell")
print(f'Hello World")

# This is a Markdown Cell

### Hello World

Cells




at runtime:

def calculate(x, y):
return x + y

total = calculate(5, 18)
print(total)

# Print Statement
print{f'This is a Code Cell")
print{f'Hello World")

15
This is a Code Cell
Hello World

This is a Markdown Cell

Hello World

modes for all types of cells called edit and command mode:

[There are two

* When we click on a cell and start editing, it will change its appearance with a blue border to
indicate the edit mode.

* \When we move out of the cell, it will change to a grey box to indicate the command mode.

Cell edit mode:
& Enilpesrh -|n
B + X B » m & » GCHe - Yyihon 3 [ipykemal) 0 @
gl ckloulats &
Eoial caloulatwm|®,. 1
1Al inLlE
i #11° )
preasare] | 1A Ldwwe] oamiskateed maosr Bkt BF LAk Sl 50 D=L gpp=h Cell command

mode:



Getting started with data analytics

Now that we can install Jupyter Notebooks and understand its core components, let's perform some
data analytics and visualizations using the Notebook.

First, we will create a new notebook named "race_data." We will use the Formula 1 World
Championship (1950-2021) dataset available from Kaggle for this analysis.

The objective of this analysis is to identify the driver with the most number of wins in F1. Before
getting started, make sure you have installed the required libraries for the Python environment. You
can use the "pipenv install" command to install Pipenv and use conda to install anaconda.

Step 1

Import the data from the Kaggle dataset (.csv file) to Pandas data frames.

import numpy as np
import pandas as pd# Import Data
results_dataframe = pd.read_csv('‘G:\data\results.csv')

circuits_dataframe = pd.read_csv('G:\data\circuits.csv')
drivers_dataframe = pd.read_csv('‘G:\data\drivers.csv')
races_dataframe = pd.read_csv('G:\data\races.csv')
constructor_dataframe = pd.read_csv('‘G:\data\constructors.csv’)

import numpy as np
import pandas as pd

results_dataframe = pd.read_csv("G:\\data\\r

esults.csv')
circuits dataframe = pd.read csv('G:\\data\\circuits.csv')
drivers_dataframe = pd.read_csv('G:\\data\\drivers.csv")
races_dataframe = pd.read_csv('G:\\data\\races.csv")
constructor_dataframe = pd.read_csv('G:\\data\\constructors.csv')

Step 2

Verify the import by printing some data frames.


https://www.kaggle.com/rohanrao/formula-1-world-championship-1950-2020
https://www.kaggle.com/rohanrao/formula-1-world-championship-1950-2020
https://www.kaggle.com/

# Prints Results Data Frame

results_dataframe.head()# Prints Drivers Data Frame
drivers_dataframe.head()

£ Do e i+ Mt Erame
# FIrLiLs EsULTs Lhata rrame

results_dataftrame.head()

resultld raceld driverld constructorld number grid position positionText positionOrder points laps time mi
0 1 18 1 1 22 1 1 1 1 100 58 1:34:50.616
1 2 18 2 2 3 5 2 2 2 80 58 +5.478
2 3 18 3 3 7 7 3 3 3 60 58 +8.163
3 4 18 4 4 5 N 4 4 4 50 58 +17.181
4 5 18 5 1 23 3 5 5 5 40 58 +18.014
3

# Prints Drivers Data Frame

drivers_dataframe.head()

driverld driverRef number code forename surname dob nationality url
} , . : i 1985- . . G e :

0 1 hamilton 44 HAM Lewis  Hamilton 01-07 British http:/fen.wikipedia.org/wiki/Lewis_Hamilton
- . . . : 1977- - : e I '

1 2 heidfeld \W HE Nick Heidfeld 05-10 German http:/fen.wikipedia.org/wiki/Nick_Heidfeld

. 1985- - y I R
2 3 rosberg 6 ROS Nico Rosberg 06-27 German http:/fen.wikipedia.org/wiki/Mico_Rosberg
1981- . A o

3 - alonso 14 ALO Fernando Alonso 07-20 Spanish  httpy//enwikipedia.org/wiki/Fernando_Alonso
= i . , _— . 1981- i I L .

4 5 kovalainen W KOV Heikki Kovalainen 10-19 Finnish  http://en.wikipedia.org/wiki/Heikki_Kowvalainen

Step 3

Join all the data frames to create a single primary data frame consisting of all the required data.

# Join Data Frames
driver_result_dataframe = pd. merge(results_dataframe,drivers_dataframe,on='driverld’)
race_result_dataframe = pd.merge(driver_result_dataframe races_dataframe,on="raceld’)

complete_race_data_dataframe =
pd.merge(race_result_dataframe,constructor_dataframe,on="constructorld’)
complete_race_data_dataframe.head()










# Join Data Frames
driver result dataframe = pd.merge{results dataframe,drivers dataframe,on="driverId")
race_result_dataframe = pd.merge(driver_result_dataframe,races_dataframe,on="raceld")

complete_race_data_dataframe = pd.merge(race_result_dataframe,constructor_dataframe,on='constructorId')

complete race data dataframe.head()

resultld raceld driverld constructorld number x grid position positionText positionOrder points ... round circuith
0 1 18 1 1 22 1 1 1 1 100 . 1
1 5 18 3 1 23 3 3 3 ] 4.0 1
2 27 19 1 1 22 9 3 3 3 4.0 2
3 25 19 3 1 23 3 3 3 3 8.0 2
4 57 20 1 1 22 3 13 13 13 0.0 3

5 rows = 37 columns

Step 4

Clean the data frame. We will remove all the unnecessary columns from the data frame.

complete_race_data_dataframe = complete_race_data_dataframe.drop

(columns=)
complete_race_data_dataframe.head()




complete_race data_dataframe = complete_race_data_dataframe.drop \
(columns=[ ‘url_x','url y',"name_y", "'nationality y','url’, 'time_vy'])

complete race data dataframe.head()

resultld raceld driverld constructorld number x grid position positionText positionOrder points .. forename su
0 1 18 1 1 22 1 1 1 1 100 . Lewis  H:
1 5 18 5 1 23 3 5 5 5 40 . Heikld  Kow
2 27 19 1 1 22 9 5 5 5 40 . Lewis  H:
3 25 19 5 1 23 8 3 3 3 6.0 . Heikki  Kow.
- 57 20 1 1 22 3 12 13 13 00 . Lewis  H:
5 rows = 31 columns

3

Step 5

Calculate the total wins for each driver. In the below code block, we:

1. Filter out race data to contain only the first position finishes and create a new integer column
called "position_mod.’

2. Group the data by the "driverRef " and "nationality_x" columns with the sum of the
postion_maod.

3. Sort the data by descending order and retrieve the first ten rows.

# Filter & Calculate Results
total_wins = complete_race_data_dataframe== "1
total_wins = total_wins.astypel(int)

total_wins = total_wins.groupby().sum().reset_index()
total_wins = total_wins.sort_values(by=, ascending=False)
total_wins = total_wins.head(10)

& 21 F+aor B ral ol aF fu] al +<
# Filter & Calculate Results
5 =
'

total win complete_race_data_dataframe[ (complete_race_data_dataframe[ "position’]== "'1")]

total wins[ position_mod'] = total_wins[‘position’].astype(int)

total wins = total wins.groupby([ 'driverRef’, 'nationality x'])["position_mod'].sum().reset_index()
total wins = total wins.sort_wvalues(by=['position_mod'], ascending-False)

total_wins = total_wins.head(18)




Step 6
Create a bar chart using the new data set retrieved in Step 5 utilizing the plotly library.

import plotly.graph_objects as go

from plotly.offline import iplot

import plotly.io as pio

pio.renderers.default = "iframe"# Create Bar Chart
chart = go.Figure(data-,

y= total_wins,

hovertext = total_wins
Jchart.update_layout(title={

text’ "TOP 10 DRIVERS WITH MOST WINS IN F1",
'y"0.9,

'X"0.5,

'xanchor": ‘center’,

'yanchor": 'top'l,

yaxis=dict(

title='"No of Wins',

titlefont_size=16,

tickfont_size=14),

xaxis=dict(

title="Driver’,

titlefont_size=16,

tickfont_size=14),

template = "plotly _dark"

)
iplot(chart)



https://plotly.com/

import pleotly.graph_objects as go
from plotly.offline import iplot
import plotly.ic as pio
pio.renderers.default = "iframe"

# Create Bar Chart

chart = go.Figure(data=[go.Bar(
x= total_wins['driverRef'],
y= total wins['position_med'],
hovertext = total_wins['nationality x']

D

chart.update_layout(title={
‘text': "TOP 18 DRIVERS WITH MOST WINS IN F1",

'y':98.9,
'x':8.5,
'sxanchor®: 'center',

‘yanchor': "top'},

yaxis=dict(
title="No of Wins",
titlefont_size=16,
tickfont_size=14),

xaxis=dict(
title="Driver"’,
titlefont_size=16,
tickfont_size=14),

template = "plotly_dark™

)
iplot(chart)

Created chart



TOP 10 DRIVERS WITH MOST WINS IN F1

un
L
=
g
o
o
I

Begin data analytics with Jupyter

Jupyter Notebooks is the ideal place to get a head start in the data analytics field. Jupyter provides a
feature-rich, robust, and user-friendly environment using multiple installation methods. Users can
utilize Jupyter in any environment regardless of the platform.

Related reading

BMC Machine Learning & Big Data

Enabling the Citizen Data Scientists

Data Science Certifications: An Introduction

Data Architecture Explained: Components, Standards & Changing Architectures
Supervised, Unsupervised & Other Machine Learning Methods

Data Ethics for Companies



https://blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://blogs.bmc.com/blogs/citizen-data-scientist/
https://blogs.bmc.com/blogs/data-science-certifications/
https://blogs.bmc.com/blogs/data-architecture/
https://blogs.bmc.com/blogs/supervised-vs-unsupervised-machine-learning/
https://blogs.bmc.com/blogs/data-ethics-responsibility/

