
INFRASTRUCTURE AND HOW “EVERYTHING AS CODE” CHANGES
EVERYTHING

This is the third blog in our mini-series that illustrates how BMC was able to use agile development,
cloud services, an Infrastructure as Code approach, and new deployment technology to deliver a new
cloud native product.

Be sure to also read: Getting Started with Cloud Native Applications, 9 Steps for Building Pipelines for
Continuous Delivery and Deployment, and Five Best Practices for Building Security as Code into a
Continuous Delivery Pipeline

http://www.bmc.com/blogs/getting-started-cloud-native-applications/
http://www.bmc.com/blogs/9-steps-building-pipelines-continuous-delivery-deployment/
http://www.bmc.com/blogs/9-steps-building-pipelines-continuous-delivery-deployment/
http://www.bmc.com/blogs/five-best-practices-building-security-code-continuous-delivery-pipeline/
http://www.bmc.com/blogs/five-best-practices-building-security-code-continuous-delivery-pipeline/

This
is the third blog in our mini-series that illustrates how BMC was able to use agile development, cloud
services, an Infrastructure as Code approach, and new deployment technology to deliver a new cloud
native product.

Remember how long it used to take to release software when infrastructure, security, compliance,
and operations processes were done by independent teams separate from
application development? Operations worked mostly in isolation, occasionally interacting with
application development teams. The operations and development teams used their own, often
different, tools and complex slow-moving processes, such as change boards, approvals, checklists
and 100-page policy documents, along with specialized tribal knowledge. That is quickly changing
as today’s DevOps teams embrace best practices, such as the concept of Everything as Code, to
ensure agility while maintaining governance.

As organizations transform to deliver new digital services faster, the disciplines of infrastructure,
security, compliance and operations must also evolve to meet the requirements for speed, agility,
and governance. The idea behind the Everything as Code concept is that infrastructure, security,
compliance and operations are all described and treated like application code such that they
follow the same software development lifecycle practices.

We have been employing these principles in our development of a new SaaS product that runs on
Amazon AWS. The following represents some of the lessons we have learned from others and then
modified by our experiences in developing, delivering and implementing a new cloud native
application.

Infrastructure as Code and the Impact on DevOps
Let’s look at some Infrastructure as Code best practices we’ve learned after operating several
production cloud applications on Amazon Web Services (AWS) cloud. Infrastructure includes
anything that is needed to run your application: servers, operating systems, installed software
packages, application servers, firewalls, firewall rules, network paths, routers, configurations for
these resources, and so on.

https://blogs.bmc.com/blogs/devops-basics-introduction/

Define and codify infrastructure1.
Infrastructure is codified in a declarative specification, such as Cloud Formation templates
for AWS cloud, Azure resource templates for Azure cloud, Docker compose and Dockerfiles,
Chef cookbooks and BMC Cloud Lifecycle Management (CLM) blueprints for both public cloud
and on-premises datacenters. These templates describe the cloud resources, their
relationships and configurations. They are used to easily provision infrastructure and
applications since these templates represent the single source of truth. They are also used for
version control; to track and make changes to infrastructure and applications in a predictable,
governed manner, often integrated with development tools. These benefits are the key
reasons that infrastructure as code is being widely adopted.
Source repository, peer review and test2.
Next, Infrastructure as Code is kept in a version control system, such as Git, where it is
versioned, under change control, tracked, peer reviewed and tested just like application
software. This will increase traceability and visibility into changes, as well as provide
collaborative means to manage the infrastructure with peer reviews.

Example: If operations wants to roll out a change to the production infrastructure, operations does
not need to do it through a console directly in production, as traditionally done in IT datacenters.
Instead, operations can create a pull request on “infrastructure as code” Git artifacts with peer
reviews conducted on the changes and then the code is deployed to production. This review
process ensures higher quality of infrastructure changes as multiple team members have visibility
into the changes and can assess the impact of the changes. It also enables “testing” of the changes
early in the cycle. Version controlled infrastructure changes also allow easy rollback to a prior
infrastructure version.

Follow the DevOps pipeline process3.
Infrastructure as Code templates go through the DevOps pipeline just like application code and
gets deployed to production. The DevOps pipeline allows the infrastructure change delivery
and governance to ensure that changes are tested and deployed in a controlled manner before
moving to production environments. At each stage of the DevOps pipeline, these templates are
used to provision or update “environments” such as Dev, QA and Production, rapidly creating
and de-provisioning dynamic infrastructure.Example: In AWS clouds, operations will do pull
requests on CloudFormation templates to make changes to configuration parameters or AWS
resources. These changes flow through lower environments such as Dev and Test, and are
fully exercised. This ensures a higher confidence that changes will not adversely impact the
application when these changes are promoted to the production environment.
Support Immutability4.
Finally, Infrastructure as Code also supports server and container immutability. Prior to
immutable infrastructure paradigms, operations teams would manage infrastructure manually,
by updating or patching software, adding software package dependencies, changing
configurations and so on. This resulted in inconsistent infrastructure not only across
development, test and production environments, but also within each of these environments.
Inconsistent infrastructure makes troubleshooting difficult. It also means that the infrastructure
is not easily scaled, updated or automated to achieve efficiencies in operations. With
immutable infrastructure, operations engineers treat infrastructure as disposable. They don’t
make changes to infrastructure such as servers or containers directly in production. Instead,
they go through a full DevOps pipeline to create new server or container images through the
DevOps pipeline, and then deploy into production to replace running servers or containers.

 This allows consistency of infrastructure in environments that facilitates automation in DevOps,
auto-scaling and remediation.

Why DevOps Should Embrace Infrastructure as Code Principles
By following these best practices, Infrastructure as Code can be successfully used for both cloud-
native and on-premises application delivery. Developers can specify infrastructure as a part of their
application code and manage it all in a single repository. This keeps the full application stack code,
definition, testing and delivery logically connected, resulting in better agility, consistency,
automation and autonomy for developers for full-stack provisioning and operations.

For the operations team, best practices for software development are also applied to infrastructure,
which helps to drive improved automation and governance, stability and quality without negatively
impacting agility. Improvements in stability and quality can be attributed to following a DevOps
pipeline with versioning, early testing of infrastructure, peer reviews and collaborative process — just
like code. Finally, there is traceability and the ability to easily answer questions, such as:

What is my current infrastructure?
Who made infrastructure changes in the past few days?
Can I roll back the latest configuration change made to my infrastructure?

We strongly believe that using Infrastructure as Code principles in managing application delivery
can result in compelling advantages to both developers and operations by increasing agility while
maintaining governance.

