INFRASTRUCTURE AS CODE (IAC): THE COMPLETE BEGINNER’S
GUIDE

Infrastructure is one of the core tenets of a software development process—it is directly responsible
for the stable operation of a software application. This infrastructure can range from servers, load
balancers, firewalls, and databases all the way to complex container clusters.

Infrastructure considerations are valid beyond production environments, as they spread across the
complete development process. They include tools and platforms such as CI/CD platforms, staging
environments, and testing tools. These infrastructure considerations increase as the level of
complexity of the software product increases. Very quickly, the traditional approach for manually
managing infrastructure becomes an unscalable solution to meet the demands of DevOps-based
modern rapid software development cycles.

And that's how Infrastructure as Code (laC) has become the de facto solution in development today.
laC allows you to meet the growing needs of infrastructure changes in a scalable and trackable
manner.

What is infrastructure as code?

Infrastructure as Code or laC is the process of provisioning and managing infrastructure defined
through code, instead of doing so with a manual process.

As infrastructure is defined as code, it allows users to easily edit and distribute configurations while
ensuring the desired state of the infrastructure. This means you can create reproducible
infrastructure configurations.

https://blogs.bmc.com/blogs/what-is-it-infrastructure-and-what-are-its-components/
https://blogs.bmc.com/blogs/load-balancing/
https://blogs.bmc.com/blogs/load-balancing/
https://blogs.bmc.com/blogs/kubernetes-multi-clusters/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/what-is-ci-cd/
https://blogs.bmc.com/blogs/devops-basics-introduction/

Moreover, defining infrastructure as code also:

» Allows infrastructure to be easily integrated into version control mechanisms to create
trackable and auditable infrastructure changes.

* Provides the ability to introduce extensive automation for infrastructure management. All
these things lead to IaC being integrated into CI/CD pipelines as an integral part of the SDLC.
 Eliminates the need for manual infrastructure provisioning and management. Thus, it allows
users to easily manage the inevitable config drift of underlying infrastructure and

configurations and keep all the environments within the defined configuration.

Declarative vs imperative Infrastructure as Code

When dealing with laC tools, there are two major differentiating approaches for writing code. These
two approaches are declarative and imperative. Simply put:

* An imperative approach allows users to specify the exact steps to be taken for a change, and
the system does not deviate from the specified steps.

» A declarative approach essentially means users only need to define the end requirement, and
the specific tool or platform handles the steps to take in order to achieve the defined
requirement.

The declarative approach is preferred in most infrastructure management use cases as it offers a
greater degree of flexibility when managing infrastructure.

Chef is considered an imperative tool, where Terraform, Pulumi, CloudFormation, ART, Puppet are
all declarative. Uniquely, Ansible is mostly declarative with support for imperative commands.

laC vs laaS

Importantly, laC is not a derivative of infrastructure as a service (laaS). They are two different
concepts.

* Infrastructure as a Service is one of the core cloud services: virtualized computing
resources—servers, networking infrastructure, storage, etc.—are provided via the cloud service.

* Infrastructure as Code is a tool that can be used to provision and manage infrastructure. It is
not limited to only cloud-based resources. In fact, you apply laC to a wide variety of
environments, including on-premises.

https://blogs.bmc.com/blogs/devops-source-version-control/
https://blogs.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://blogs.bmc.com/blogs/it-virtualization/

= bmc

Infrastructure as
a Service (laa$S)

Infrastructure
as Code (laC)

One of the core
cloud services

Offers virtualized
compute
resources

A tool for
provisioning &
managing
infrastructure

Not limited to the
cloud; works on-
premises

When & how to use Infrastructure as Code

laC may seem unnecessary for simpler, less complex infrastructure requirements, but that isn't
accurate. Asny—every—modern software development pipeline should use infrastructure as Code to
handle the infrastructure.

Besides, the advantages of 1aC far outweigh any implementation and management overheads.

Advantages of 1aC

Here are the top benefits of laC:

e Reducing shadow IT within organizations and allowing timely and efficient infrastructure

changes that are done in parallel to application development.

Integrating directly with CI/CD platforms.

Enabling version-controlled infrastructure and configuration changes leading to trackable and

auditable configurations.

Easily standardizing infrastructure with reproducible configurations.

Effectively managing configurating drift and keeping infrastructure and configurations in their

desired state.

e Having the ability to easily scale up infrastructure management without increasing CapEx or
OpEx. With 1aC, you'll reduce CapEx and OpEx spending overall, as automation eliminates the
need for time-consuming manual interactions and reduces incorrect configurations.

https://blogs.bmc.com/blogs/shadow-it/
https://blogs.bmc.com/blogs/capex-vs-opex/
https://blogs.bmc.com/blogs/capex-vs-opex/

When to use 1aC

Not sure when to use 1aC? The simplest answer is whenever you have to manage any type of
infrastructure.

However, it becomes more complex with the exact requirements and tools. Some may require strict
infrastructure management, while others may require both infrastructure and configuration
management. Then comes platform-specific questions like if the tool has the necessary feature set,
security implication, integrations, etc. On top of that, the learning curve comes into play as users
prefer a simpler and more straightforward tool than a complex one.

The below table shows a categorization of the tools mentioned above according to their ideal use
cases.

Use Case Tools to use

Terraform, Pulumi, AWS CloudFormation,

Infrastructure management
9 Azure Resource Templates

Configuration management with somewhat limited

infrastructure management capabilities Ansible, Chef. Puppet

Configuration management CFEngine

One tool may not be sufficient in most scenarios. For instance, Terraform may be excellent for
managing infrastructure across multiple cloud environments yet may be limited when in-depth
configurations are required. In those kinds of situations, users can utilize a tool such as Ansible to
carry out the necessary configurations.

Likewise, users can mix and match any laC tool and use them in their CI/CD pipelines depending on
the exact requirements.

(Learn how to set up vour own ClL/CD pipeline.)

https://blogs.bmc.com/blogs/ci-cd-pipeline-setup

Harness
scalable &
immutablo

infrastructure

Improve
Custormer
catisfaction

Top Benefits of
Using

Infrastructure as
Code (laC})

Manage
change safely

Apply
standardized
sofftware
delivery
principles

Infrastructure as Code tools & platforms

Under the big laC umbrella, there are all sorts of tools, from dedicated infrastructure management
tools to configuration management, from open-source tools to platform-specific laC options.

Let's look at some of the most popular l1aC tools and platforms.

Terraform

Terraform by HashiCorp is the leading IaC tool specialized in managing infrastructure across various
platforms from AWS, Azure, GCP to Oracle Cloud, Alibaba Cloud, and even platforms like
Kubernetes and Heroku.

As a platform-agnostic tool, Terraform can be used to facilitate any infrastructure provisioning and
management use cases across different platforms and providers while ensuring the desired state
across the configurations.

Ansible

Ansible is not a dedicated Infrastructure management tool but more of an open-source
configuration management tool with 1aC capabilities. Ansible supports both cloud and on-prem
environments and can act through SSH or WinRM as an agentless tool. Ansible excels at
configuration management and infrastructure provisioning yet is limited when it comes to managing
said infrastructure.

(Find out why people often compare Ansible & Control-M.)

https://blogs.bmc.com/blogs/it-infrastructure-management/
https://blogs.bmc.com/blogs/it-infrastructure-management/
https://blogs.bmc.com/blogs/configuration-management/
https://blogs.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://blogs.bmc.com/blogs/what-is-kubernetes
https://blogs.bmc.com/blogs/control-m-vs-ansible-how-are-they-different/

Pulumi

Pulumi is a relatively new tool that aims to provide a developer-first IaC experience. Unlike other
tools that force users to use a specific language or format, Pulumi offers freedom to use any
supported programming language any way they like.

This tool supports Python, TypeScript, JavaScript, Go, C#, F#, and the state is managed through
Pulumi service by default.

Chef/Puppet

Chef and Puppet are two powerful configuration management tools. Both aim to provide
configuration management and automation capabilities with some infrastructure management
capabilities across the development pipeline.

» Chef is developed to be easily integrated into DevOps practices with greater collaboration
tools.

» Puppet evolved by targeting sheer processes automation. Today, Puppet has automated built-
in watchers to identify configuration drift.

(Check out Puppet's State of DevOps report.)

CFEngine

CEEngine is one of the most mature tools solely focused on configuration management. Even
though there is no capability to manage the underlying infrastructure, CDEngine can accommodate
even the most complex configuration requirements, covering everything from security hardening to
compliance.

AWS CloudFormation

CloudFormation is the AWS proprietary platform specific IaC tool to manage AWS infrastructure.
CloudFormation has deep integration with all AWS services and can facilitate any AWS configuration
as a first-party solution.

Azure Resource Templates

Microsoft Azure uses JSON-based Azure Resource Templates to facilitate 1aC practices within the
Azure platform. These resource templates ensure consistency of the infrastructure and can be used
for any type of resource configuration.

In addition to the above, there are specialized tools aimed at specific infrastructure and configuration
management tasks such as:

e Packer, EC2 Image Builder, and Azure Image Builder create deployable custom os images.

e Cloud-Init is the industry-standard cross-platform cloud instance initialization tool. It enables
users to execute the script when provisioning resources (servers).

e (R)?ex is a fully featured infrastructure automation framework

(Get acquainted with Azure DevOps.)

https://www.pulumi.com/
https://blogs.bmc.com/blogs/programming-languages/
https://blogs.bmc.com/blogs/state-of-devops/
https://cfengine.com/
https://blogs.bmc.com/blogs/aws-cloudformation/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://blogs.bmc.com/blogs/it-infrastructure-automation/
https://blogs.bmc.com/blogs/azure-devops/

Examples of Infrastructure as Code

Let's consider a simple scenario of provisioning an AWS EC2 Instance. In the following example, we
can see how Terraform, Ansible, and AWS CloudFormation codes are used for this requirement.

Terraform

terraform {
required providers {

aws = {
source = "hashicorp/aws"
version = "~> 3.,27"
}
}
}
provider "aws" {
access key = "aws access key"
secret key = "aws secret key"
// shared credentials file = "/Users/.aws/creds"
region = "us-west-1"
}
resource "aws instance" "web server" {
ami = "ami-0123456"
instance type = "t3.small"
subnet id = "subnet-a000111x"
vpc security group ids = "sg-dfddeo0l1ll"
key name = "web server test key"
tags = {
Name = "Web Server"
}

}
Ansible

- hosts: localhost

gather facts: False

vars_files:

- credentials.yml

tasks:

- name: Provision EC2 Instance

ec2:

aws access key: "{{aws access key}}"
aws secret key: "{{aws secret key}}"
key name: web server test key

group: test

instance type: t3.small
image: "ami-0123456"
wait: true

count: 1

region: us-west-1
instance tags:

Name: Web Server
register: ec2

AWS CloudFormation

AwWSTemplateFormatVersion: "2010-09-09"
Resources:

WebInstance:

Type: AWS::EC2::Instance
Properties:

InstanceType: t3.small
Imageld: ami-0123456
KeyName: web server test key
SecurityGroupIds:

- sg-dfddoooll

SubnetId: subnet-a000111x
Tags:

Key: Name

Value: Web Server

A real world example: 1aC for DevOps

Within the context of software development, a fundamental constraint is the need for the
environment where recently developed software code is tested to exactly mirror the live
environment where such code will be deployed to. This is the only way of assuring that the new
code will hot collide with existing code definitions: by generating errors or conflicts that may
compromise the entire system.

In the past, software delivery would follow this sort of pattern:

1. A System Administrator would setup up a physical server and install the operating system with
all necessary service packs and tuning to mirror the status of the main operating live machine
that supports the production environment.

2. Then a Database Administrator would undergo the same process for the support database,
and the machine would be handed off to a test team.

3. The developer would deliver the code/program by copying it to the test machine, and the test
team would run several operational and compliance tests.

4. Once the new code has gone through the entire process, you can deploy it to the live,
operational environment. In many cases, the new code won't work correctly, so additional
troubleshooting and rework are necessary.

https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/load-testing-performance-testing-and-stress-testing-explained/
https://blogs.bmc.com/blogs/sysadmin-role-responsibilities-salary/
https://blogs.bmc.com/blogs/data-lake-vs-data-warehouse-vs-database-whats-the-difference/
https://blogs.bmc.com/blogs/it-teams/
https://blogs.bmc.com/blogs/application-developer-roles-responsibilities/

(Understand the differences between deploying & releasing software.)

Manual recreation of a live environment leaves doors open to a multitude of most likely minor but
potentially quite important human errors, regarding:

e OS version
e Patch level
e Time zone
e Etc.

A live environment clone, created using the exact same IaC as the live environment, has the
absolute guarantee that that if it works in the cloned environment it will work in live.

Imagine a software delivery process involving separate environments for DEV, UAT, and Production.
There's seemingly little value in having a DEV and UAT environment that isn't an exact mirror of the
prod environment given that those early environments are critical to measuring the quality and
production readiness of a software build version.

The introduction of virtualization enabled this process to be expedited, especially regarding the
phase of creating and updating a test server that would mirror the live environment. Yet the process
was manual, meaning a human would have to create and update the machine accordingly and in a
timely fashion. With the introduction of DevOps, these process became even more “agile”. Adding
automation to the server virtualization and testing phases replaces human intervention, improving
productivity and efficiency:.

To summarize: In the past, several man-hours and human resources were required to complete the
software deployment cycle (Developers, Systems Administrators, Database Administrators,
Operation testers). Now, it is possible to have the developer alone complete all tasks:

1. The developer writes the application code and the configuration management-related
instructions that will trigger actions from the virtualization environment, and other
environments such as the database, appliances, testing tools, delivery tools, and more.

2. Upon new code delivery, the configuration management instructions will automatically create
a new virtual test environment with an application server plus database instance that exactly
mirrors the live operational environment structure, both in terms of service packs and
versioning as well as live data that is transferred to such virtual test environment. (This is the
Infrastructure as Code part of the process.)

3. Then a set of tools will perform necessary compliance tests and error identification and
resolution. The new code is then ready for deployment to the live IT environment.

Quick, trackable infrastructure changes

Infrastructure as Code has become a vital part of modern application development and deployment
pipelines. It is achieved by facilitating quick and trackable infrastructure changes that directly
integrate into CI/CD platforms. Infrastructure as Code is crucial for both:

* Facilitating scalable infrastructure management
« Efficiently managing the config drift in all environments

Getting started with Infrastructure as Code may seem daunting with many different tools and
platforms targeted at different use cases. However, cross this hurdle, and you will have a powerful

https://blogs.bmc.com/blogs/software-deployment-vs-release/
https://blogs.bmc.com/blogs/it-automation/
https://blogs.bmc.com/blogs/it-automation/
https://blogs.bmc.com/blogs/devops-configuration-management/

infrastructure management mechanism at your fingertips.

Related reading

 BMC DevOps Blog

e Software Project Management Phases & Best Practices

e GitHub, GitLab, Bitbucket & Azure DevOps: What's The Difference?
e Container Sprawl: What It Is & How To Avoid It

e | ow Code vs No Code Explained

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/software-project-management/
https://blogs.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://blogs.bmc.com/blogs/container-sprawl/
https://blogs.bmc.com/blogs/low-code-vs-no-code/

