
HOW TO USE MONGOOSE FOR MONGODB & NODEJS

Here we show how to use Mongoose to save data to a MongoDB.

(This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)

What is Mongoose?
In this example, we will use NodeJS. Do not worry if you do not know NodeJS. We will explain every
line of code. It is server-side JavaScript. It is a little difficult to understand at first, in part because it is
asynchronous, meaning multi-threaded. So you have to use either:

Synchronous functions only
Callbacks

Otherwise when you do statement n, statement n+1 will run right away too. So you can be, for
example, processing a text file before you have read it completely.

Mongoose is an API on top of an API. It makes using the MongoDB NodeJS API easier to use.

Prerequisites
First, you need NodeJS version 6 or higher. Then install mongoose like this:

npm install mongoose

http://mongoosejs.com/
https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/


Sample Data
We will use data on smokers from the CDC (Center for Disease Control). Download that like this:

wget https://chronicdata.cdc.gov/views/wsas-xwh5

This dataset is a survey of smokers. We are only interested in the part of the data that shows which
states have the most smokers (i.e., certain cachedContents JSON sections). That section looks like
this:

{
"id" : 320867377,
"name" : "LocationDesc",
"dataTypeName" : "text",
"description" : "Location description",
"fieldName" : "locationdesc",
"position" : 3,
"renderTypeName" : "text",
"tableColumnId" : 20084901,
"width" : 109,
"cachedContents" : {
"largest" : "Wyoming",
"non_null" : 14069,
"null" : 0,
"top" : ,
smallest : String,
format : {
displayStyle : String,
align : String
}
}
});

We then compile the schema into a model like this:

var Smokers = mongoose.model('smokers', schema);

Read the JSON string data (fs.readFileSync) into a JSON JavaScript object (using JSON.parse).
Notice that we use fs.readFileSync (i.e,. synchronous) instead of fs.readFile so that the next sections
of code will wait until the read is complete.

fs = require('fs');

var d = fs.readFileSync('/home/walker/Documents/mongodb/tobacco.json',
'utf8', (err, data) => {
if (err) throw err;
return (d); });

var e = JSON.parse(d);

Next is the most complex part. The tobacco JSON file is two levels of JSON. So we have a loop



inside a look. Then we refer to cachedContents part of the JSON object using
e.columns.cachedContents. We only want those records with e.columns.cachedContents.top, i.e.,
top is defined. (The other ones are geolocation data.)

We supply the e.columns.cachedContents to the constructor for the Smokers schema. Then we
use the save method. Save runs asynchronously. But we don’t care about that as it comes at the end
of the program.

for (i in e) {
for (j in i) {

if (e.columns.dataTypeName != 'location') {
if (typeof(e.columns.cachedContents.top) != 'undefined') {
var smokers = new Smokers(e.columns.cachedContents);
console.log(e.columns.cachedContents);
smokers.save(function (err) {
if (err)return console.log(err);
})
}
}
}
}

The Complete Code
Copy and save this as loaddata.js. Then run it using: node loaddata.js. Notice there is no main or
anything like that. It just runs top-to-bottom.

fs = require('fs');

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/tobacco', { useMongoClient: true });
mongoose.Promise = global.Promise;

var schema = new mongoose.Schema({
cachedContents : {
largest : String,
non_null : Number,
null : Number,
top : ,
smallest : String,
format : {
displayStyle : String,
align : String
}
}
});

var d = fs.readFileSync('/home/walker/Documents/mongodb/tobacco.json',
'utf8', (err, data) => {



if (err) throw err;
return (d); });

var e = JSON.parse(d);

var Smokers = mongoose.model('smokers', schema);

for (i in e) {
for (j in i) {

if (e.columns.dataTypeName != 'location') {
if (typeof(e.columns.cachedContents.top) != 'undefined') {
var smokers = new Smokers(e.columns.cachedContents);
console.log(e.columns.cachedContents);
smokers.save(function (err) {
if (err)return console.log(err);
})
}
}
}
}

As saved record will look something like this:

{ largest: 'Wyoming',
non_null: 14069,
null: 0,
top:
,
smallest: 'Alabama' }

Tips
As you work with this you can delete and then show objects as shown below. Remove requires a
filter. {} is a filter meaning all records. You use db instead of tobacco to denote the database. And
smokers is the collection. And if you spell anything wrong it does not give you an error as it assumes
you want to create a new object. (JavaScript is like that too as it has no error checking with regards
to spelling variable names.)

sse tobacco
db.smokers.remove({})
db.smokers.find({}).pretty()

And then you can step through the data like this with the interactive node interpreter (i.e., run node
and then paste in whatever code you want to study:

for (i in e) { for (j in i)
{"i=",i,"j=",j,console.log(e.columns.cachedContents) }}



Additional Resources
Mongoose: MongoDB object modelling for Node.js from Yuriy Bogomolov

https://www.slideshare.net/yuriybogomolov/ybo-mongo-dbmeetup
https://www.slideshare.net/yuriybogomolov

