
HOW TO SETUP A MONGODB CLUSTER

Here we show how to set up a MongoDB cluster. In the previous post we showed how to install it on
one machine.

There are three pieces to install:

config server1.
query router2.
shard server, i.e., database3.

Looking at the diagram below, the mongos process runs as a router, meaning it tells clients where to
look for data. Data is spread across the cluster based on sharing. Sharding is the assignment of
records to servers based on the hashed value of some index. The config server hold configuration
information.

https://blogs.bmc.com/blogs/how-to-install-mongodb-ubuntu-mac/
https://blogs.bmc.com/blogs/how-to-install-mongodb-ubuntu-mac/

(This article is
part of our MongoDB Guide. Use the right-hand menu to navigate.)

Install MongoDB
Technically, to make a MongoDB a cluster just means to three layers of the MongoDB architecture
as separate processes. You could do this for academic purposes on one machine. But here we use
two.

We will install the router and config servers on 172.31.46.15 and the shard server on 172.31.47.43. For
simplicity, let's call the first server the config server and the second server the database server.

Do not use apt-get to install MongoDB as that is not the current version, usually. Instead follow the
steps below. Note that this installs mongod (config and shard server), mongos (router), and mongo
client as three separate packages.

Open firewall ports 27017, 27018, and 27019 between the two servers.

You need the all three packages on the config server but only mongodb-org-server on the database
server. On Ubuntu, install them like this.

wget
https://repo.mongodb.org/apt/ubuntu/dists/xenial/mongodb-org/4.0/multiverse/b
inary-amd64/mongodb-org-server_4.0.5_amd64.deb

sudo dpkg -i mongodb-org-server_4.0.5_amd64.deb

wget
https://repo.mongodb.org/apt/ubuntu/dists/xenial/mongodb-org/4.0/multiverse/b
inary-amd64/mongodb-org-shell_4.0.5_amd64.deb

https://blogs.bmc.com/blogs/mongodb-overview-getting-started-with-mongodb/

sudo dpkg -i mongodb-org-shell_4.0.5_amd64.deb

wget
https://repo.mongodb.org/apt/ubuntu/dists/xenial/mongodb-org/4.0/multiverse/b
inary-amd64/mongodb-org-mongos_4.0.5_amd64.deb

 sudo dpkg -i mongodb-org-mongos_4.0.5_amd64.deb

Note that if you mess up any step, remove the server and then erase the data file library,
/var/lib/mongodb. If you don't erase the data files when you reinstall the software it will keep the
previous configuration and thus restore any mistakes you made.

Config server
Login to the config server.

To set up all three servers we will repeat the same 4 steps on each server:

Edit config file1.
Start process2.
Check log for errors3.
Log into shell to do further configuration4.

Now, on the config server edit the config file. Note for the sake of simplicity we make each config
file have a descriptive name:

sudo vim /etc/mongodConfig.conf

Paste in the text below. First, we explain some of the fields:

path:
/var/log/mongodb/mongodConfig.log

For each process we give the log a name that
makes clear which process it is for.

port: 27019
bindIp: 172.31.46.15

By default the config server will run on port 2019
in a clustered configuration. We make that
explicit here so it not necessary to remember
that. Also the IP address is a non-loopback
address.That is so that other servers can find
this server.

sharding:
clusterRole: configsvr

Sharding means to distribute data according to
some hashing scheme. Here we tell MongoDB
that this server is a config server, as opposed to
a sharing server.

replication:
replSetName: ConfigReplSet

This means to replicate this configuration data.
We use rs.() functions to add other replicas. We
can use any name.

Paste this text into /etc/mongodConfig.conf:

storage:
 dbPath: /var/lib/mongodb

 journal:
 enabled: true

systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongodConfig.log

net:
 port: 27019
 bindIp: 172.31.46.15

sharding:
 clusterRole: configsvr

replication:
 replSetName: ConfigReplSet

Start the process:

sudo mongod --config /etc/mongodConfig.conf&

Check the logs for errors:

sudo tail -100 /var/log/mongodb/mongodConfig.log

Log in to the shell:

mongo 172.31.46.15:27019

Turn on replication with rs.initiate() and check the status with rs.status(). Notice that is picked up the
name of the replication set we configured in the config file, ConfigReplSet.

> rs.initiate()
{
 "info2" : "no configuration specified. Using a default configuration
for the set",
 "me" : "172.31.46.15:27019",
 "ok" : 1,
 "operationTime" : Timestamp(1548598138, 1),
 "$gleStats" : {
 "lastOpTime" : Timestamp(1548598138, 1),
 "electionId" : ObjectId("000000000000000000000000")
 },
 "lastCommittedOpTime" : Timestamp(0, 0),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548598138, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)

 }
 }
}
ConfigReplSet:SECONDARY> rs.status()
{
 "set" : "ConfigReplSet",

Configure Query Router
Login to the config server.
Edit the config file:

sudo vim /etc/mongoRouter.conf

Paste in the text below. Notice:

configDB: ConfigReplSet/172.31.46.15:27019 This tells the query router where to find the
config server and their replica sets.

systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongoRouter.log

net:
 port: 27017
 bindIp: 172.31.46.15

sharding:
 configDB: ConfigReplSet/172.31.46.15:27019

Start the service. Notice the s in mongos. This is the query router process.

sudo mongos --config /etc/mongoRouter.conf&

Check the log and look for errors:

mongo 172.31.46.15:27017

Configure Shard
Log into database server.

sudo vim /etc/mongodShard.conf

Paste in the text below. Notice that:

clusterRole: shardsvr Means this will be a shard server, as opposed to a
config server.

replSetName:
ShardReplSet

This means to replicate the data. In the config server
we told it to replicate the configuration.

port: 27018 By default shard servers run on port 27018. So we
make that explicit so we don't have to remember that.

storage:
 dbPath: /var/lib/mongodb
 journal:
 enabled: true

systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongodShard.log

net:
 port: 27018
 bindIp: 172.31.47.43

sharding:
 clusterRole: shardsvr

replication:
 replSetName: ShardReplSet

Start the process.

sudo mongod --config /etc/mongodShard.conf&

Check the log for errors.

sudo tail -f /var/log/mongodb/mongodShard.log

Log into the shell.

mongo 172.31.47.43:2018

Turn on replications with rs.initiate() and then check the status with rs.status(). Notice the name
ShardReplSet. We could use any name as long as we use the same name across all shards in the
cluster.

rs.initiate()
{
 "info2" : "no configuration specified. Using a default configuration
for the set",
 "me" : "172.31.47.43:27018",
 "ok" : 1,
 "operationTime" : Timestamp(1548602253, 1),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548602253, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),

 "keyId" : NumberLong(0)
 }
 }
}
ShardReplSet:SECONDARY> rs.status()
{
 "set" : "ShardReplSet",

Add Shard to Cluster
Go back to config server and connect to router:

mongo 172.31.46.15:27017

Paste all of the followings commands into the shell:

sh.addShard("ShardReplSet/172.31.47.43:27018")

{
 "shardAdded" : "ShardReplSet",
 "ok" : 1,
 "operationTime" : Timestamp(1548602529, 4),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548602529, 4),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Create a database named books then enable sharding.

use books
switched to db books

sh.enableSharding("books")

{
 "ok" : 1,
 "operationTime" : Timestamp(1548602601, 6),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548602601, 6),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Create a collection.

db.createCollection("collection")

{
 "ok" : 1,
 "operationTime" : Timestamp(1548602659, 5),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548602659, 5),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Create an index. We will index the field isbn in descending order.

db.collection.createIndex({ isbn: -1 })

{
 "raw" : {
 "ShardReplSet/172.31.47.43:27018" : {
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
 }
 },
 "ok" : 1,
 "operationTime" : Timestamp(1548602670, 9),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548602670, 9),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Add one record.

db.collection.insertOne({ isbn: 100 })

{
 "acknowledged" : true,

 "insertedId" : ObjectId("5c4dcd69e83741cb900b46f8")
}

Turn on sharding for the collection.

sh.shardCollection("books.collection", { isbn : "hashed" })

{
 "collectionsharded" : "books.collection",
 "collectionUUID" : UUID("0d10320b-3086-472e-a3ac-4be67fae21f9"),
 "ok" : 1,
 "operationTime" : Timestamp(1548603537, 12),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1548603537, 12),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Now verify that data is distributed across cluster as shown below. Of course we only have one
database server, so it just shows one. In another blog post we will show how to add more servers.

db.collection.getShardDistribution()

Shard ShardReplSet at ShardReplSet/172.31.47.43:27018
 data : 0B docs : 0 chunks : 2
 estimated data per chunk : 0B
 estimated docs per chunk : 0

Totals
 data : 0B docs : 0 chunks : 2
 Shard ShardReplSet contains NaN% data, NaN% docs in cluster, avg obj size on
shard : NaNGiB

