
HOW KERAS MACHINE LANGUAGE API MAKES TENSORFLOW
EASIER

Keras is a Python framework designed to make working with Tensorflow (also written in Python)
easier. It builds neural networks, which, of course, are used for classification problems. The example
problem below is binary classification. You can find the code here. The binary classification problem
here is to determine whether a customer will buy something given 14 different features. You can see
the data here.

Keras can run on top of:

TensorFlow
cuDNN
CNTK

Here we use Tensorflow. So install Aconda and then run these commands to install the rest.

conda install theano
conda install tensorflow
conda install keras

(This tutorial is part of our Guide to Machine Learning with TensorFlow & Keras. Use the right-hand
menu to navigate.)

https://keras.io/
https://github.com/werowe/KerasExample/blob/master/kerasExample.py
https://raw.githubusercontent.com/werowe/logisticRegressionBestModel/master/KidCreative.csv
https://anaconda.org/anaconda/python
https://blogs.bmc.com/blogs/tensorflow-vs-keras/

The Code
In the code below, we have a dataframe of shape (673,14), meaning 673 rows and 14 feature
columns. We take the columns called Buy and use that for labels. You can use the Keras methods
with dataframes, numpy arrays, or Tensors.

We declare our model to be Sequential. These are a stack of layers.

We tell Keras to return the accuracy metric metrics=.

import tensorflow as tf
from keras.models import Sequential
import pandas as pd
from keras.layers import Dense

url = 'https://raw.githubusercontent.com/werowe/
logisticRegressionBestModel/master/KidCreative.csv'

data = pd.read_csv(url, delimiter=',')

labels=data
features = data.iloc

model = Sequential()

model.add(Dense(units=64, activation='relu', input_dim=1))
model.add(Dense(units=14, activation='softmax'))

model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=)

model.fit(labels, features,
 batch_size=12,
 epochs=10,
 verbose=1,
 validation_data=(labels, features))
model.evaluate(labels, features, verbose=0)

model.summary()

The output looks like this. As you can see it ran the sgd (standard gradient descent) optimizer and
categorical_crossentropy 10 times, since we set the epochs to 10. Since we used the same data for
training and evaluating we get a 0.9866 accuracy. In actual use we would split the input data into
training and test data, following the standard convention. The loss is 362.1225. We could have used
mse (mean squared error), but we used categorical_crossentropy. The goal of the model (in this
case sgd) is to minimize the loss function, meaning the difference between the actual and predicted
values.

rain on 673 samples, validate on 673 samples
Epoch 1/10
2018-07-26 08:43:32.122722: I
tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
673/673 - 0s 494us/step - loss: 1679.5777 - acc: 0.9851 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 2/10
673/673 - 0s 233us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 3/10
673/673 - 0s 218us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 4/10
673/673 - 0s 208us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 5/10
673/673 - 0s 213us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 6/10
673/673 - 0s 212us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 7/10
673/673 - 0s 216us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 8/10
673/673 - 0s 218us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 9/10
673/673 - 0s 228us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
Epoch 10/10
673/673 - 0s 239us/step - loss: 362.1225 - acc: 0.9866 - val_loss: 362.1225
- val_acc: 0.9866
<keras.callbacks.History object at 0x7fa48f3ccac8>
>>>
... model.evaluate(labels, features, verbose=0)

>>>
>>> model.summary()

Layer (type) Output Shape Param #
===
dense_1 (Dense) (None, 64) 128

dense_2 (Dense) (None, 14) 910
===

Total params: 1,038
Trainable params: 1,038
Non-trainable params: 0

Now you can use the predict() method to make some prediction on whether a person is likely to buy
this product or not.

