GRAPHING SPARK DATA WITH HIGHCHARTS

Here we look at how to use HighCharts with Spark. HighCharts is a charting framework written in
JavaScript. It works with both static and streaming data. So you can make live charts with it. And their
collection of charts is a beautiful set of designs, made larger by the annual competition they hold.

HighCharts is free for non-commercial use. It is difficult to master unless you are a JavaScript
programmer, so these people have written a framework around it, called spark-highcharts.

One problem with that framework is that there is hardly any documentation. All they provide beyond
a couple of examples are JavaDocs. So you could bounce back and forth between that and the
HighCharts documentation. If you use it, send them an email and let them know that their
community of users is growing. Certainly what they and HighCharts offer are far more options that
are built into Zeppelin.

You will also want to study graph styles, as knowing about the different types of charts and the
concepts behind them is probably more difficult than writing code to use them. For example, do you
know what is a funnel series?

(This tutorial is part of our Apache Spark Guide. Use the right-hand menu to navigate.)

HighCharts and Zeppelin

You can use HighCharts in web pages, with spark-shell, and with Zeppelin. Here we use it with
Zeppelin.

You can use this Docker command to download and a Zeppelin bundle with HighCharts already
installed:

https://github.com/knockdata/spark-highcharts
https://github.com/knockdata/spark-highcharts/tree/master/docs/scaladocs
https://www.highcharts.com/docs
https://www.highcharts.com/docs/chart-and-series-types/funnel-series
https://blogs.bmc.com/blogs/introduction-to-sparks-machine-learning-pipeline/

docker run -p 8080:8080 -d knockdata/zeppelin-highcharts

And use this to stop all Docker containers when done. But export your work as a JSON file first as it
will be lost when you do that:

docker stop $(docker ps -aq)

The other alternative is to add these artifacts to the Zeppelin Spark interpreter for Zeppelin that you
already have installed. What you are telling Zeppelin here is to reach out to Maven Central and
download the Java code you need to make HighCharts work. (Plus it requires lift-json).

spark ! ; K | Fodn ESresian || X semove

Option

= Inberpreper Iof nose
CONMECT [0 EXEN process
Properies

name walu
angs

FraEaer Iacall*]
SPArk, app. nams Zeppalin
Spark. Conss. max

SEPAFK, ERBCLINT MBIy

oeppelin R.omd R

reppehinspark. maxResull 100

aeppelincspark. pimtREFLOwpu e

reppelinapark. sgl S1asarace falge

zeppelinspark, useHneConbed R
Dhis prafinl e b ioie &

artifact wxclude

com knockdaa spask-hghchans: 0064

et iiftweboliftjson:2.0

Create a simple chart

| am not expert on creating aesthetically pleasing charts, yet. So below we make a simple series, i.e,
a chart with an x and y axis.

The code is clear enough and is the same we used to explain how to use Zeppelin and Spark here.
We convert all the double to integers and then group them to have only a few data points of simple
numbers. Otherwise the chart is too crowded and difficult to read.

import com.knockdata.spark.highcharts.
import com.knockdata.spark.highcharts.model.
import org.apache.spark.sql.types.

import org.apache.commons.io.IOUtils

import java.net.URL

import java.nio.charset.Charset

val data = sc.parallelize(

TOUtils.toString(

https://blogs.bmc.com/blogs/using-zeppelin-big-data/

new
URL("https://raw.githubusercontent.com/cloudera/spark/master/mllib/data/ridge
-data/lpsa.data"),

Charset.forName("utf8")).split("\n"))

val schemaStr = "a b c d e"

val fields = schemaStr.split(" ").map(fieldName => StructField(fieldName,
DoubleType, nullable = true))

val schema = StructType(fields)

val parsedData = data.map(U => l.replace(",", " ").split(" "))

def toIntSql(i: Double) : Int = { i.toInt }

case class DataClass(a: Double, b: Double, c: Double, d: Double, e: Double)
ar x = parsedData.map(b => DataClass(toIntSql(b(@).toDouble),
toIntSql(b(1l).toDouble), toIntSql(b(2).toDouble), toIntSql(b(3).toDouble),
toIntSql(b(4).toDouble)))

var df = x.toDF()

df.createOrReplaceTempView(df")

var g = spark.sql("select a, b from df group by a , b")

The charting section, shown below, is fairly self-explanatory. What it shows is that the HighCharts
works with data frames, not SQL temporary tables. The arguments you give depend on the chart
type. Like we said, the documentation is sparse, but you could look at the spark-highcharts JavaDoc
for the series chart here and definition of a series charts by HighCharts here

highcharts(g
.SerieS("X" _> Ilall’ Ilyll _> Ilbll)
.orderBy(col("a"))).plot()

Here is our simple chart of x and y where X is the column a in the dataframe and y is the column b.
Since it is a series, the x axis should be sorted.

highctartulg
T o ", "y b
ordgriyiosll "s")1}, ploti)

Chat lss

https://github.com/knockdata/spark-highcharts/tree/master/docs/scaladocs
https://www.highcharts.com/docs/chart-concepts/series

