
GITOPS EXPLAINED: CONCEPTS, BENEFITS & GETTING STARTED

DevOps has changed the way we develop and manage applications, resulting in faster, more
consistent, more collaborative development cycles. It has evolved further by incorporating
microservices-based architectures and even databases in the form of database DevOps.

Now there’s a new kind of Ops.

GitOps is rapidly gaining popularity to extend the scope of DevOps further to include application
infrastructure. In this article, we will have a look at GitOps and how to leverage it for delivering
cloud-native applications.

What is GitOps?
GitOps is a set of practices that are aimed at managing the underlying infrastructure of an
application. It utilizes Git as the source code management tool for managing the infrastructure code.
In other words, GitOps is an evaluation of infrastructure as code and DevOps practices which uses
Git as the single source of truth for provisioning infrastructure declaratively.

The term GitOps was confined by Weaveworks in 2017 and was primarily aimed at managing
Kubernetes deployments. However, now it has evolved into supporting other infrastructure
management solutions such as Terraform.

The goal of GitOps is to simplify and streamline the development process. This leads to building
reproducible infrastructure with proper state management, which both:

https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/microservices-architecture/
https://blogs.bmc.com/blogs/getting-started-cloud-native-applications/
https://about.gitlab.com/stages-devops-lifecycle/source-code-management/
https://blogs.bmc.com/blogs/infrastructure-as-code/
https://blogs.bmc.com/blogs/kubernetes-deployment/
https://blogs.bmc.com/blogs/agile-vs-waterfall/


Increases the overall visibility
Reduces the management overhead of the application infrastructure

GitOps allows developers or the Ops team to declare their infrastructure as code and version control
them via Git. Whenever a new change is required, a pull request with the new change is created,
executing the CI/CD pipeline to provision or modify the infrastructure.

Additionally, GitOps offers users the flexibility to select any tool, technology, or platform and use the
same DevOps practices when creating infrastructure.

Principles of GitOps
There are a few core principles that apply when implementing and dealing with GitOps. Let’s take a
look.

Declarative system
In the GitOps model, the complete system is configured declaratively. This declarative approach is
focused on the result (desired state) rather than the steps needed to achieve the required result.

This declarative approach allows users to specify the end goal without worrying about each explicit
step needed as in an imperative approach. As a state-aware declarative approach, users can easily
store these states in Git, facilitating convenient deployments and rollbacks.

The system state is versioned in Git
All the declarative states are stored in the version-controlled system, which acts as the single
source of truth. With this version-controlled approach, all the system infrastructure changes are
available chronologically, enabling users to identify infrastructure changes over time easily. It is also
helpful in:

Troubleshooting
Auditing

https://blogs.bmc.com/blogs/devops-source-version-control/
https://blogs.bmc.com/blogs/deployment-pipeline/


Rollbacks

Changes are automatically applied when approved
When a pull or merge request is made, it will be verified and then approved since all the changes
are stored in Git.

Furthermore, it should be automated to apply changes to the system automatically when they are
approved. GitOps prefers immediate automated deployments to achieve the desired state quickly.

Benefits of GitOps approach
GitOps enables organizations to streamline their infrastructure provisioning and application
deployment strategies. This leads to an extensive range of benefits/

Ease of infrastructure management
GitOps allows users to manage infrastructure easily as a part of the overall DevOps process by
testing and deploying changes quickly with the help of:

CI/CD tools
Automated deployments
Shorter feedback loops

By having infrastructure as a part of the CI/CD pipeline, any application modification that requires an
infrastructure change can be bundled and managed together. It also makes it easier to troubleshoot
production bugs, such as network connectivity, as users have better visibility of the changes with the
deployments.

Increased productivity
The source-controlled, validated infrastructure reduces configuration errors that can occur during
deployments, saving time for Ops teams to diagnose and fix those errors. Besides, source control
allows multiple teams to work on different parts of the infrastructure without interfering with each
other's work.

This leads to increased productivity in both the Dev and Ops teams, which ultimately results in faster
developments and deployments.

Improved reliability & stability
In a version-controlled infrastructure approach, infrastructure changes are validated, and the state is
always maintained. When coupled with the declarative approach to provisioning infrastructure, it can
drastically reduce errors in the application infrastructure.

On top of that, version control allows users to audit changes and roll back to previous states with
ease. This, in turn, improves the stability and reliability of the application.

Another factor is managing config drifts. As a modern application, there will be requirements to
apply manual hotfixes or small changes that can lead to config drifts. With GitOps, users can:

https://blogs.bmc.com/blogs/deployment-automation-benefits/
https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/


Easily identify such drifts between the declared infrastructure and the actual infrastructure
Quickly mitigate them

Standardization
GitOps helps to standardize infrastructure deployments. Infrastructure can undergo almost the same
verification and validation process for application code with consistent:

End-to-end workflows
Standardized code structures
Documentation
Testing methods

This introduces standardized and fully reproducible infrastructure configurations.

Enhanced security
GitOps approach helps organizations enforce security best practices and track all the infrastructure
changes and corresponding states available via Git SCM. Moreover, this organized approach enables
proper audit trails to identify details related to infrastructure changes such as

Responsible users
Deployment data time
Affected resources
Etc.

The GitOps approach also helps to streamline the management of authentication and authorization
requirements for infrastructure modification. Since infrastructure is a part of the CI/CD pipeline,
individual developers do not require direct access to resources, hence not needing credentials to
access said resource.

This also makes it necessary for users to only provide credentials at the time of execution in the
pipeline. This further enforces strict access controls to underlying resources reducing attack vectors
to the infrastructure.

However, we have to properly implement GitOps as a part of the delivery pipeline to gain all the
above benefits. In the next section, we’ll at how to implement a GitOps workflow properly.

How to implement GitOps
If your organization already has a properly implemented DevOps pipeline using Git as the SCM tool,
implementing GitOps to cover the infrastructure is a pretty straightforward process. Simply:

Add the infrastructure code into the Git repository.1.
Configure the CI/CD pipeline to include the infrastructure repository as a part of the delivery2.
pipeline.

On the other hand, if you start from scratch, the first thing to consider is the Git repository. As GitOps
is platform-agnostic, users can utilize any local or cloud-based Git repository such as:

GitHub

https://blogs.bmc.com/blogs/devops-source-version-control/


BitBucket
Azure Repos
GitLab
Etc.

Then comes the CI/CD pipeline platform, which boils down to your preferred and familiar platform
tools. Tools like Jenkins and CircleCI can be used with any git repository. BitBucket Pipeline and
GitLab Pipelines prefer their own code repositories. Whatever the selected pipeline platform, its
primary goal will be to:

Automate the delivery process.
Facilitate a clear workflow between the Git repository and the infrastructure management
platform.

(Learn how to build a CI/CD pipeline.)

The differentiating factor of a GitOps pipeline is the GitOps operator. This mechanism sits between
the pipeline and the infrastructure platform, acting as a middleman for facilitating communications
between them. There are multiple available operators such as:

Kubernetes Operator
Terraform Cloud Operator
Azure Service Operator
Etc.

GitOps workflow
Now, we’ve got a Git repository and a properly configured CI/CD pipeline. An infrastructure engineer
will:

Declare the infrastructure as code.1.
Push the code to a Git repository.2.
Create a pull request.3.

After that, this code can be reviewed and scrutinized by another team member and finally get
approved—which triggers the CI/CD pipeline. The pipeline will then inform the Git Operator, which
will pick up all the modifications and the desired new state.

The Git operator will then compare the state of the existing infrastructure and desired state. This
relates to the observability concept, which is the ability to measure the internal states of a system.
This observability ensures that the desired state and the observed state of the infrastructure are the
same.

If the states are different, it will seamlessly orchestrate and provision the underlying infrastructure to
match the desired state.

This workflow can be further extended by incorporating multiple infrastructure deployments such as
staging and production. This way, the initial deployment will be carried out in a staging environment,
which acts as a further fail safe before the final deployment of the infrastructure modifications to the
production environment. Likewise, a GitOps pipeline offers limitless possibilities to extend and
integrate infrastructure to meet any needs.

https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://blogs.bmc.com/blogs/ci-cd-pipeline-setup/
https://blogs.bmc.com/blogs/kubernetes-operator/


GitOps example
Let's take a real-world scenario of GitOps where a web application is deployed in a cloud
environment.

Assume there is a sudden spike in traffic to the application, which creates performance issues,
causing an unsatisfactory user experience when using the web application.

To address this issue, the delivery team wants to increase the resource allocation for the web
application. With GitOps, users can define the resource increments and push the changes to the Git
repository. Then these changes can be quickly reviewed and verified by other team members and
approved for production deployment.

This triggers the GitOps CI/CD pipeline and initializes the git operator. Then the git operator will
compare the states. This new configuration will identify this as a state change and automatically
orchestrate the underlying infrastructure to match the desired state.

The delivery team only has to monitor any failures, which will also get automatically notified to the
delivery team via the CI/CD pipeline. If there are no issues with the underlying infrastructure, it will
be successfully modified with new resource allocations to meet the user demands.

But, what happens if the deployment fails, or a configuration error causes a networking issue?

GitOps approach allows users to quickly roll back to a previous state of the infrastructure
seamlessly. Then they can again review and create infrastructure changes that address all these
issues and trigger the CI/CD pipeline to deploy the changes automatically.

Without GitOps, reverting to a previous configuration state is a complicated task that becomes



nearly impossible if the changes are not properly documented.

Streamlined, automated pipelines
GitOps translates all the manual, complicated infrastructure management tasks to a streamlined,
automated pipeline. This declarative version-controlled approach makes the time-
consuming, daunting task of managing infrastructure painless while increasing the visibility,
reliability, and stability of the system.

Related reading
BMC DevOps Blog
GitHub vs GitLab vs Bitbucket: What’s The Difference & How To Choose
How To Use Elastic Enterprise Search with GitHub
Kubernetes Guide, a tutorial series
Automation In DevOps: Why & How To Automate DevOps Practices
What Is Cloud Native DevOps?

https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://blogs.bmc.com/blogs/elastic-enterprise-search-github/
https://blogs.bmc.com/blogs/what-is-kubernetes/
https://blogs.bmc.com/blogs/automation-in-devops/
https://blogs.bmc.com/blogs/cloud-native-devops/

