
MODEL TRAINING & EVALUATION FOR FINANCIAL FRAUD
DETECTION WITH AMAZON SAGEMAKER & CONTROL-M

BMC & AWS Logo

Model training and evaluation are fundamental in payment fraud
detection because the effectiveness of a machine learning (ML)-based fraud detection system
depends on its ability to accurately identify fraudulent transactions while minimizing false positives.
Given the high volume, speed, and evolving nature of financial fraud, properly trained and
continuously evaluated models are essential for maintaining accuracy and efficiency. Fraud
detection requires a scalable, automated, and efficient approach to analyzing vast transaction
datasets and identifying fraudulent activities.

This blog presents an ML-powered fraud detection pipeline built on Amazon Web Services (AWS)
solutions—Amazon SageMaker, Amazon Redshift, Amazon EKS, and Amazon Athena—and
orchestrated using Control-M to ensure seamless automation, scheduling, and workflow
management in a production-ready environment. The goal is to train three models—logistic
regression, decision tree, and multi-layer perceptron (MLP) classifier across three vectors—precision,
recall, and accuracy. The results will help decide which model can be promoted into production.

While model training and evaluation is the outcome, the training and evaluation is part of the larger
pipeline. In this blog, the represented pipeline integrates automation at every stage, from data
extraction and preprocessing to model training, evaluation, and result visualization. By leveraging
Control-M’s orchestration capabilities, the workflow ensures minimal manual intervention, optimized
resource utilization, and efficient execution of interdependent jobs.

Process Flow:

Figure 1. The end-to-end pipeline.

Key architectural highlights include:

Automated data extraction and movement from Amazon Redshift to Amazon S3 using Control-
M Managed File Transfer (MFT)
Orchestrated data validation and preprocessing with AWS Lambda and Kubernetes (Amazon
EKS)
Automated model training and evaluation in Amazon SageMaker with scalable compute
resources
Scheduled performance monitoring and visualization using Amazon Athena and QuickSight
End-to-end workflow orchestration with Control-M, enabling fault tolerance, dependency
management, and optimized scheduling

In production environments, manual execution of ML pipelines is not feasible due to the complexity
of handling large-scale data, model retraining cycles, and continuous monitoring. By integrating
Control-M for workflow orchestration, this solution ensures scalability, efficiency, and real-time fraud
detection while reducing operational overhead. The blog also discusses best practices, security
considerations, and lessons learned to help organizations build and optimize their fraud detection
systems with robust automation and orchestration strategies.

Amazon SageMaker:
The core service in this workflow is Amazon SageMaker, AWS's fully managed ML service, which
enables rapid development and deployment of ML models at scale. We've automated our ML
workflow using Amazon SageMaker Pipelines, which provides a powerful framework for
orchestrating complex ML workflows. The result is a fraud detection solution that demonstrates the
power of combining AWS's ML capabilities with its data processing and storage services. This
approach not only accelerates development but also ensures scalability and reliability in production
environments.

Dataset Overview
The dataset used for this exercise is sourced from Kaggle, offering an excellent foundation for
evaluating model performance on real-world-like data.

https://www.kaggle.com/datasets/sriharshaeedala/financial-fraud-detection-dataset/data

The Kaggle dataset used for this analysis provides a synthetic representation of financial
transactions, designed to replicate real-world complexities while integrating fraudulent behaviors.
Derived from the PaySim simulator, which uses aggregated data from financial logs of a mobile
money service in an African country, the dataset is an invaluable resource for fraud detection and
financial analysis research.

The dataset includes the following features:

step: Time unit in hours over a simulated period of 30 days.
type: Transaction types such as CASH-IN, CASH-OUT, DEBIT, PAYMENT, and TRANSFER.
amount: Transaction value in local currency
nameOrig: Customer initiating the transaction.
oldbalanceOrg/newbalanceOrig: Balance before and after the transaction for the initiating
customer.
nameDest: Recipient of the transaction.
oldbalanceDest/newbalanceDest: Balance before and after the transaction for the recipient.
isFraud: Identifies transactions involving fraudulent activities.
isFlaggedFraud: Flags unauthorized large-scale transfers.

Architecture
The pipeline has the following architecture and will be orchestrated using Control-M.

Figure 2. Pipeline archetecture.

Note: All of the code artifacts used are available at this link.

Control-M Integration Plug-ins Used in This Architecture
To orchestrate this analysis pipeline, we leverage Control-M integration plug-ins that seamlessly
connect with various platforms and services, including:

Control-M for SageMaker:1.
Executes ML model training jobs on Amazon SageMaker.
Enables integration with SageMaker to trigger training jobs, monitor progress, and
retrieve outputs.

Control-M for Kubernetes:2.
Executes Python scripts for data processing and normalization within an Amazon
EKS environment.
Ideal for running containerized jobs as part of the data preparation process.

Control-M Managed File Transfer:3.
Facilitates file movement between Amazon S3 buckets and other storage services.
Ensures secure and automated data transfers to prepare for analysis.

Control-M Databases:4.
Enables streamlined job scheduling and execution of SQL scripts, stored
procedures, and database management tasks across multiple database platforms,
ensuring automation and consistency in database operations.

Control-M for AWS Lambda:5.
Enables seamless scheduling and execution of AWS Lambda functions, allowing
users to automate serverless workflows, trigger event-driven processes, and
manage cloud-based tasks efficiently.
Ensures orchestration, monitoring, and automation of Lambda functions within
broader enterprise workflows, improving operational efficiency and reducing
manual intervention

AWS Services used in this Architecture
Amazon S3: Amazon S3 is a completely managed Object Storage service.1.

Amazon SageMaker: Amazon SageMaker is a fully managed ML service.2.
Amazon EKS: Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed Kubernetes3.
service that enables you to run Kubernetes seamlessly in both AWS Cloud and on-premises
data centers.
Amazon Redshift: Amazon Redshift is a popular Cloud Data Warehouse provided by AWS.4.

Setting up the Kubernetes environment
The Amazon EKS Kubernetes environment is central to the pipeline's data preprocessing stage. It
runs Python scripts to clean, normalize, and structure the data before it is passed to the ML models.
Setting up the Kubernetes environment involves the following steps:

Amazon EKS Cluster Setup:

https://github.com/moladub/automation-api-community-solutions/tree/master/9-aws-integrations/ctm-and-amazon-sagemaker

Use Terraform to create an Amazon EKS cluster or set up your Kubernetes environment
in any cloud provider.
Ensure the Kubernetes nodes can communicate with the cluster and vice versa.

Containerized Python Script:
Build and push a container image to the Amazon Elastic Container Registry (ECR) for the
preprocessing script.
Deploy a Kubernetes Job to execute the script.

For a detailed guide on setting up a Kubernetes environment for similar workflows, refer to this blog,
where we described the Kubernetes setup process step by step.

For a comprehensive walkthrough on setting up Snowflake in similar pipelines, please refer to this
blog.

Workflow summary
Redshift_Unload Job1.

Action: Executes a SQL script (copy_into_s3.sql) to extract structured data from Amazon
Redshift and store it in Amazon S3.
Purpose: Moves raw data into an accessible S3 bucket for subsequent transformations.
Next Step: Triggers S3_to_S3_Transfer to move data from the warehouse bucket to the
processing bucket.

S3_to_S3_Transfer Job2.

Action: Uses Control-M’s Managed File Transfer (MFT) to move the dataset from the sam-
sagemaker-warehouse-bucket to the bf-sagemaker bucket.
Purpose: Ensures the data is available in the right location for preprocessing and renames it to
Synthetic_Financial_datasets_log.csv.
Next Step: Triggers the Data_Quality_Check job.

Data_Quality_Check Job3.

Action: Runs an AWS Lambda function (SM_ML_DQ_Test) to validate the dataset.
Purpose: Ensures the CSV file contains at least 5 columns and more than 1000 rows,
preventing corrupt or incomplete data from entering the ML pipeline.
Next Step: Triggers EKS-Preprocessing-job for data transformation.

EKS-Preprocessing-Job4.

Action: Executes a Kubernetes job to clean and transform the dataset stored in Amazon S3.
Purpose:

Runs a Python script (main.py) inside a container to process
Synthetic_Financial_datasets_log.csv
Generates a cleaned and structured dataset (processed-data/output.csv).

Configuration Details:
Image: new-fd-repo stored in Amazon ECR
Environmental variables: Defines S3 input/output file locations
Resource allocation: Uses 2Gi memory, 1 CPU (scales up to 4Gi memory, 2 CPUs)

https://aws.amazon.com/ecr/
https://community.bmc.com/s/news/aA3Kj000000TUzhKAG/orchestrating-a-multicloud-fraud-analytics-pipeline-with-controlm
https://community.bmc.com/s/news/aA3Kj000000TUzhKAG/orchestrating-a-multicloud-fraud-analytics-pipeline-with-controlm
https://community.bmc.com/s/news/aA3Kj000000TUzhKAG/orchestrating-a-multicloud-fraud-analytics-pipeline-with-controlm

IAM permissions: Uses a Kubernetes service account for S3 access
Logging & cleanup: Retrieves logs and deletes the job upon completion

Next step: Triggers the Amazon SageMaker training job.

Amazon SageMaker_TE_Pipeline5.

Action: Runs the TrainingAndEvaluationPipeline in Amazon SageMaker.
Purpose:

Trains and evaluates multiple ML models on the preprocessed dataset (processed-
data/output.csv).
Stores trained model artifacts and evaluation metrics in an S3 bucket.
Ensures automatic resource scaling for efficient processing.

Next step: Triggers Load_Amazon_Athena_Table to store results in Athena for visualization.

Load_Amazon_Athena_Table Job6.

Action: Runs an AWS Lambda function (athena-query-lambda) to load the evaluation metrics
into Amazon Athena.
Purpose:

Executes a SQL query to create/update an Athena table (evaluation_metrics).
Allows QuickSight to query and visualize the model performance results.

How the steps are connected
Redshift → S3 Transfer: Data is extracted from Amazon Redshift and moved to Amazon S3.1.
Data validation and preprocessing: The data quality check ensures clean input before2.
transformation using Kubernetes.
ML Training: Amazon SageMaker trains and evaluates multiple ML models.3.
Athena and QuickSight integration: The model evaluation results are queried through Athena,4.
enabling real-time visualization in Amazon QuickSight.
Final outcome: A streamlined, automated ML workflow that delivers a trained model and5.
performance insights for further decision-making.

This detailed workflow summary ties each step together while emphasizing the critical roles played
by the Kubernetes preprocessing job and the Amazon SageMaker training pipeline.

Control-M workflow definition

Figure 3. Control-M workflow definition.

In the next section we will go through defining each of these jobs. The jobs can be defined using a
drag-and-drop, no-code approach in the Planning domain of Control-M, or they can be defined as
code in JSON. For the purposes of this blog, we will use the as-code approach.

Amazon Redshift and file transfer workflows
Redshift_Unload Job

Type: Job:Database:SQLScript

Action: Executes a SQL script in Amazon Redshift to unload data from Redshift tables into an S3
bucket.

Description: This job runs a predefined SQL script (copy_into_s3.sql) stored on the Control-M agent

to export structured data from Redshift into Amazon S3. The unloaded data is prepared for
subsequent processing in the ML pipeline.

Dependencies: The job runs independently but triggers the Copy_into_bucket-TO-
S3_to_S3_MFT-262 event upon successful completion.

Key configuration details: Redshift SQL script execution

SQL script:

UNLOAD ('SELECT * FROM SageTable')
TO 's3://sam-sagemaker-warehouse-bucket/Receiving Folder/Payments_RS.csv'
IAM_ROLE 'arn:aws:iam::xyz:role/jogoldbeRedshiftReadS3'
FORMAT AS csv
HEADER
ALLOWOVERWRITE
PARALLEL OFF
DELIMITER ','
MAXFILESIZE 6GB; -- 1GB max per file

Event handling

Events to trigger:
Copy_into_bucket-TO-S3_to_S3_MFT-262 → Signals that the data has been successfully
unloaded to S3 and is ready for further processing or transfers.

See an example below:
"Redshift_Unload" : {
"Type" : "Job:Database:SQLScript",
"ConnectionProfile" : "ZZZ-REDSHIFT",
"SQLScript" : "/home/ctmagent/redshift_sql/copy_into_s3.sql",
"Host" : "<<host details>>",
"CreatedBy" : "<<creator’s email>>",
"RunAs" : "ZZZ-REDSHIFT",
"Application" : "SM_ML_RS",
"When" : {
"WeekDays" : ,
"MonthDays" : ,
"DaysRelation" : "OR"
},
"eventsToAdd" : {
"Type" : "AddEvents",
"Events" :
}
}

S3_to_S3_Transfer job
Type: Job:FileTransfer

Action: Transfers a file from one S3 bucket to another using Control-M Managed File Transfer (MFT).

Description: This job moves a dataset (Payments_RS.csv000) from sam-sagemaker-warehouse-
bucket to bf-sagemaker, renaming it as Synthetic_Financial_datasets_log.csv in the process. This
prepares the data for further processing and validation.

Dependencies: The job waits for Copy_into_bucket-TO-S3_to_S3_MFT-262 to ensure that data has
been successfully exported from Redshift and stored in S3 before initiating the transfer.

Key configuration details:

Source bucket: sam-sagemaker-warehouse-bucket
Source path: /Receiving Folder/Payments_RS.csv000

Destination bucket: bf-sagemaker
Destination path: /temp/
Renamed file: Synthetic_Financial_datasets_log.csv at the destination.

Connection profiles: Uses the MFTS3 profile for both the source and destination S3 buckets.
File watcher: Monitors the source file for readiness with a minimum detected size of 200 MB.

Event handling

Events to wait for:
Copy_into_bucket-TO-S3_to_S3_MFT-262 → Ensures data has been exported from Redshift
to S3 before transferring it to another S3 bucket.

Events to trigger:
S3_to_S3_MFT-TO-Data_Quality_Check → Notifies the next step that the dataset is ready
for validation.
SM_ML_Snowflake_copy-TO-SM_Model_Train_copy → Signals the beginning of the model
training process using the processed data.

See an example below:

"S3_to_S3_Transfer" : {
"Type" : "Job:FileTransfer",
"ConnectionProfileSrc" : "MFTS3",
"ConnectionProfileDest" : "MFTS3",
"S3BucketNameSrc" : "sam-sagemaker-warehouse-bucket",
"S3BucketNameDest" : "bf-sagemaker",
"Host" : : "<<host details>>",
"CreatedBy" : : "<<creator’s email>>",
"RunAs" : "MFTS3+MFTS3",
"Application" : "SM_ML_RS",
"Variables" : ,
"FileTransfers" : ,
"When" : {
"WeekDays" : ,
"MonthDays" : ,

"DaysRelation" : "OR"
},
"eventsToWaitFor" : {
"Type" : "WaitForEvents",
"Events" :
},
"eventsToAdd" : {
"Type" : "AddEvents",
"Events" :
},
"eventsToDelete" : {
"Type" : "DeleteEvents",
"Events" :
}
},
"eventsToAdd" : {
"Type" : "AddEvents",
"Events" :
}
}

Data_Quality_Check job
Type: Job:AWS Lambda

Action: Executes an AWS Lambda function to perform a data quality check on a CSV file.

Description: This job invokes the Lambda function SM_ML_DQ_Test to validate the structure and
integrity of the dataset. It ensures that the CSV file has at least 5 columns and contains more than
1,000 rows before proceeding with downstream processing. The job logs execution details for
review.

Dependencies: The job waits for the event S3_to_S3_MFT-TO-Data_Quality_Check, ensuring that
the file transfer between S3 buckets is complete before running data validation.

Key configuration details:

Lambda function name: SM_ML_DQ_Test
Execution environment:

Host: Runs on ip-172-31-18-169.us-west-2.compute.internal
Connection profile: JOG-AWS-LAMBDA
RunAs: JOG-AWS-LAMBDA

Validation criteria:
✅ The CSV file must have at least 5 columns.
✅ The CSV file must contain more than 1,000 rows.

Logging: Enabled (Append Log to Output: checked) for debugging and validation tracking.

Event handling:

Events to wait for:

The job waits for S3_to_S3_MFT-TO-Data_Quality_Check to confirm that the dataset has
been successfully transferred and is available for validation.

Events to delete:
The event S3_to_S3_MFT-TO-Data_Quality_Check is deleted after processing to ensure
workflow continuity and prevent reprocessing.

See an example below:

"Data_Quality_Check" : {
 "Type" : "Job:AWS Lambda",
 "ConnectionProfile" : "JOG-AWS-LAMBDA",
 "Append Log to Output" : "checked",
 "Function Name" : "SM_ML_DQ_Test",
 "Parameters" : "{}",
 "Host" : : "<<host details>>",
 "CreatedBy" : : "<<creator’s email>>",
 "Description" : "This job performs a data quality check on CSV file to
make sure it has at least 5 columns and more than 1000 rows",
 "RunAs" : "JOG-AWS-LAMBDA",
 "Application" : "SM_ML_RS",
 "When" : {
 "WeekDays" : ,
 "MonthDays" : ,
 "DaysRelation" : "OR"
 },
 "eventsToWaitFor" : {
 "Type" : "WaitForEvents",
 "Events" :
 },
 "eventsToDelete" : {
 "Type" : "DeleteEvents",
 "Events" :
 }
 }

Amazon SageMaker: Model training and evaluation workflows
EKS-Preprocessing-Job
Type: Job:Kubernetes

Action: Executes a Kubernetes job on an Amazon EKS cluster to preprocess financial data stored in
an S3 bucket.

Description: This job runs a containerized Python script that processes raw financial datasets stored
in bf-sagemaker. It retrieves the input file Synthetic_Financial_datasets_log.csv, applies necessary
transformations, and outputs the cleaned dataset as processed-data/output.csv. The Kubernetes
job ensures appropriate resource allocation, security permissions, and logging for monitoring.

Dependencies: The job runs independently but triggers the sagemaker-preprocessing-job-TO-
AWS_SageMaker_Job_1-751-262 event upon completion, signaling that the processed data is ready
for model training in SageMaker.

Key configuration details:

Kubernetes job specification

Image: 623469066856.dkr.ecr.us-west-2.amazonaws.com/new-fd-repo
Command execution: Runs the following script inside the container:

bash

CopyEdit

python3 /app/main.py -b bf-sagemaker -i Synthetic_Financial_datasets_log.csv -o processed-
data/output.csv

Environment variables:
S3_BUCKET: bf-sagemaker
S3_INPUT_FILE: Synthetic_Financial_datasets_log.csv
S3_OUTPUT_FILE: processed-data/output.csv

Resource allocation

Requested resources: 2Gi memory, 1 CPU
Limits: 4Gi memory, 2 CPUs
Volume mounts: Temporary storage mounted at /tmp

Execution environment

Host: Runs on mol-agent-installation-sts-0
Connection profile: MOL-K8S-CONNECTION-PROFILE for EKS cluster access
Pod logs: Configured to retrieve logs upon completion (Get Pod Logs: Get Logs)
Job cleanup: Deletes the Kubernetes job after execution (Job Cleanup: Delete Job)

Event handling:

Events to trigger:
sagemaker-preprocessing-job-TO-AWS_SageMaker_Job_1-751-262 → Signals that the
preprocessed data is ready for SageMaker model training.

See an example below:

"EKS-Prerocessing-job" : {
 "Type" : "Job:Kubernetes",
 "Job Spec Yaml" : "apiVersion: batch/v1\r\nkind: Job\r\nmetadata:\r\n
name: s3-data-processing-job\r\nspec:\r\n template:\r\n spec:\r\n
serviceAccountName: default # Ensure this has S3 access via IAM\r\n
containers:\r\n - name: data-processing-container\r\n image:
623469066856.dkr.ecr.us-west-2.amazonaws.com/new-fd-repo\r\n command:
\r\n env:\r\n - name: S3_BUCKET\r\n value: \"bf-
sagemaker\"\r\n - name: S3_INPUT_FILE\r\n value:

\"Synthetic_Financial_datasets_log.csv\"\r\n - name:
S3_OUTPUT_FILE\r\n value: \"processed-data/output.csv\"\r\n
resources:\r\n requests:\r\n memory:
\"2Gi\"\r\n cpu: \"1\"\r\n limits:\r\n memory:
\"4Gi\"\r\n cpu: \"2\"\r\n volumeMounts:\r\n - name:
tmp-storage\r\n mountPath: /tmp\r\n restartPolicy:
Never\r\n volumes:\r\n - name: tmp-storage\r\n emptyDir:
{}\r\n\r\n",
 "ConnectionProfile" : "MOL-K8S-CONNECTION-PROFILE",
 "Get Pod Logs" : "Get Logs",
 "Job Cleanup" : "Delete Job",
 "Host" : : "<<host details>>",
 "CreatedBy" : : "<<creator’s email>>",
 "RunAs" : "MOL-K8S-CONNECTION-PROFILE",
 "Application" : "SM_ML_RS",
 "When" : {
 "WeekDays" : ,
 "MonthDays" : ,
 "DaysRelation" : "OR"
 },
 "eventsToAdd" : {

 "Type" : "AddEvents",
 "Events" :
 }
 }

Amazon SageMaker_TE_Pipeline job
Type: Job:Amazon Sagemaker

Action: Executes an Amazon Sagemaker training and evaluation pipeline to train ML models using
preprocessed financial data.

Description: This job runs the TrainingAndEvaluationPipeline, which trains and evaluates ML
models based on the preprocessed dataset stored in bf-sagemaker. The pipeline automates model
training, hyperparameter tuning, and evaluation, ensuring optimal performance before deployment.

Dependencies: The job waits for the event sagemaker-preprocessing-job-TO-
AWS_SageMaker_Job_1-751-262, ensuring that the preprocessing job has completed and the
cleaned dataset is available before training begins.

Key configuration details:

SageMaker pipeline name: TrainingAndEvaluationPipeline
Execution environment:

Host: Runs on prodagents
Connection profile: MOL-SAGEMAKER-CP for SageMaker job execution
RunAs: MOL-SAGEMAKER-CP

Pipeline parameters:
Add parameters: unchecked (defaults used)
Retry pipeline execution: unchecked (will not automatically retry failed executions)

Event handling:

Events to wait for:
sagemaker-preprocessing-job-TO-AWS_SageMaker_Job_1-751-262 → Ensures that the
preprocessed dataset is available before initiating training.

Events to delete:
sagemaker-preprocessing-job-TO-AWS_SageMaker_Job_1-751-262 → Removes
dependency once training begins.
SM_ML_Snowflake-TO-AWS_SageMaker_Job_1 → Cleans up previous event
dependencies.

See an example below:

"Amazon SageMaker_TE_Pipeline" : {
 "Type" : "Job:AWS SageMaker",
 "ConnectionProfile" : "MOL-SAGEMAKER-CP",
 "Add Parameters" : "unchecked",
 "Retry Pipeline Execution" : "unchecked",
 "Pipeline Name" : "TrainingAndEvaluationPipeline",
 "Host" : : "<<host details>>",
 "CreatedBy" : : "<<creator’s email>>",
 "RunAs" : "MOL-SAGEMAKER-CP",
 "Application" : "SM_ML_RS",
 "When" : {
 "WeekDays" : ,
 "MonthDays" : ,
 "DaysRelation" : "OR"
 },
 "eventsToWaitFor" : {
 "Type" : "WaitForEvents",
 "Events" :
 },
 "eventsToDelete" : {
 "Type" : "DeleteEvents",
 "Events" :
 }
 }

Load_Amazon_Athena_Table job
Type: Job:AWS Lambda

Action: Executes an AWS Lambda function to load evaluation results into an Amazon Athena table
for further querying and visualization.

Description: This job triggers the Lambda function athena-query-lambda, which runs an Athena
SQL query to create or update a table containing ML evaluation metrics. The table enables seamless
integration with Amazon QuickSight for data visualization and reporting.

Dependencies: The job waits for the event SM_Model_Train_copy-TO-
Athena_and_Quicksight_copy, ensuring that the SageMaker training and evaluation process has
completed before loading results into Athena.

Key configuration details:

Lambda function name: athena-query-lambda
Execution environment:

Host: Runs on airflowagents
Connection Profile: JOG-AWS-LAMBDA
RunAs: JOG-AWS-LAMBDA

Athena table purpose:
Stores ML model evaluation results, including accuracy, precision, and recall scores.
Enables easy querying of performance metrics through SQL-based analysis.
Prepares data for visualization in Amazon QuickSight.

Event handling:

Events to wait for:
SM_Model_Train_copy-TO-Athena_and_Quicksight_copy → Ensures that the SageMaker
training and evaluation process has completed before updating Athena.

Events to delete:
SM_Model_Train_copy-TO-Athena_and_Quicksight_copy → Cleans up the event
dependency after successfully loading data.

See an example below:

"Load_Amazon_Athena_Table" : {
 "Type" : "Job:AWS Lambda",
 "ConnectionProfile" : "JOG-AWS-LAMBDA",
 "Function Name" : "athena-query-lambda",
 "Parameters" : "{}",
 "Append Log to Output" : "unchecked",
 "Host" : "airflowagents",
 "CreatedBy" : "michael_oladugba@bmc.com",
 "RunAs" : "JOG-AWS-LAMBDA",
 "Application" : "SM_ML_RS",
 "When" : {
 "WeekDays" : ,
 "MonthDays" : ,
 "DaysRelation" : "OR"
 }
 },

 "eventsToWaitFor" : {
 "Type" : "WaitForEvents",

 "Events" :
 },
 "eventsToDelete" : {
 "Type" : "DeleteEvents",
 "Events" :
 }
 }

WORKFLOW EXECUTION:
Training and evaluation steps in Amazon SageMaker

Figure 4. Amazon SageMaker training and evaluation steps.

Pipeline execution logs in CloudWatch:

Figure 5. CloudWatch execution logs.

Workflow execution in Control-M

Figure 6. Control-M workflow execution.

The role of Amazon SageMaker:
To analyze the dataset and identify patterns of fraud, we will run the data through three ML models
that are available in Amazon SageMaker: logistic regression, decision tree classifier, and multi-
layer perceptron (MLP). Each of these models offers unique strengths, allowing us to evaluate their
performance and choose the best approach for fraud detection.

Logistic regression: Logistic regression is a linear model that predicts the probability of an1.

event (e.g., fraud) based on input features. It is simple, interpretable, and effective for binary
classification tasks.
Decision tree classifier: A decision tree is a rule-based model that splits the dataset into2.
branches based on feature values. Each branch represents a decision rule, making the model
easy to interpret and well-suited for identifying patterns in structured data.
Multi-layer perceptron: An MLP is a type of neural network designed to capture complex, non-3.
linear relationships in the data. It consists of multiple layers of neurons and is ideal for
detecting subtle patterns that may not be obvious in simpler models.

By running the dataset through these models, we aim to compare their performance and determine
which one is most effective at detecting fraudulent activity in the dataset. Metrics such as accuracy,
precision, and recall will guide our evaluation.

Trainmodels.py:

This script processes data to train ML models for fraud detection. It begins by validating and loading
the input dataset, ensuring data integrity by handling missing or invalid values and verifying the
target column isFraud. The data is then split into training and testing sets, which are saved for future
use. The logistic regression, decision tree classifier, and MLP are trained on the dataset, with the
trained models saved as .pkl files for deployment or further evaluation. The pipeline ensures robust
execution with comprehensive error handling and modularity, making it an efficient solution for
detecting fraudulent transactions.

Evaluatemodels.py:

This script evaluates ML models for fraud detection using a test dataset. It loads test data and the
three pre-trained models to assess their performance. For each model, it calculates metrics such as
accuracy, precision, recall, classification report, and confusion matrix. The results are stored in a
JSON file for further analysis. The script ensures modularity by iterating over available models and
robustly handles missing files or errors, making it a comprehensive evaluation pipeline for model
performance.

Results and outcomes
Model evaluation results in Amazon QuickSight.

Model evaluation results in Amazon QuickSight

The decision tree classifier model shows the most balanced performance with respect to precision and recall,
followed by the MLP. Logistic regression performs poorly in correctly identifying positive instances despite its
high accuracy.

Summary
Building an automated, scalable, and efficient ML pipeline is essential for combating fraud in today’s
fast-evolving financial landscape. By leveraging AWS services like Amazon SageMaker, Redshift,
EKS, and Athena, combined with Control-M for orchestration, this fraud detection solution ensures
seamless data processing, real-time model training, and continuous monitoring.

A key pillar of this workflow is Amazon SageMaker, which enables automated model training,
hyperparameter tuning, and scalable inference. It simplifies the deployment of ML models, allowing
organizations to train and evaluate multiple models—logistic regression, decision tree classifier, and
MLP—to determine the most effective fraud detection strategy. Its built-in automation for training,
evaluation, and model monitoring ensures that fraud detection models remain up-to-date, adaptive,
and optimized for real-world transactions.

The importance of automation and orchestration cannot be overstated—without it, maintaining a
production-grade ML pipeline for fraud detection would be cumbersome, inefficient, and prone to
delays. Control-M enables end-to-end automation, ensuring smooth execution of complex
workflows, from data ingestion to model training in Amazon SageMaker and evaluation in Athena.

This reduces manual intervention, optimizes resource allocation, and improves overall fraud
detection efficiency.

Moreover, model training and evaluation remain at the heart of fraud detection success. By
continuously training on fresh transaction data within Amazon SageMaker, adapting to evolving
fraud patterns, and rigorously evaluating performance using key metrics, organizations can maintain
high fraud detection accuracy while minimizing false positives.

As fraudsters continue to develop new attack strategies, financial institutions and payment
processors must stay ahead with adaptive, AI-driven fraud detection systems. By implementing a
scalable and automated ML pipeline with Amazon SageMaker, organizations can not only enhance
security and reduce financial losses but also improve customer trust and transaction approval rates.

