EDGE COMPUTING FOR REAL-TIME ANOMALY DETECTION OF 10T
DATA

An anomaly, defined as any change in usual behavior, can provide early warning of a problem. For
example, anomalies in an Internet of Things (I0T) sensor’s timeseries data can indicate a failure in a
manufacturing unit. However, detecting anomalies in real time is becoming more and more
challenging. Traditional anomaly detection methods such as creating visualizations and dashboards
can't keep pace with the extreme data volumes and velocity of today's loT. In this blog, we'll look at
other methods.

Static threshold-based alerts can be configured to detect anomalies. As a more automated
approach, this is an improvement over traditional methods, but it still has several disadvantages,
such as:

¢ Admins need domain knowledge to set the right thresholds
* Thresholds are not adaptive to data changes
» Static alerts are difficult to maintain in ever-changing environments

Supervised or unsupervised machine learning (ML)-based methods bring intelligence to
automated anomaly detection. By continuously learning timeseries data behavior, the system
becomes more adaptive to data changes and can better handle changing environments.

However, the volume of data generated by IoT devices is increasing with time, driving related
increases in network bandwidth, storage volume, and compute. As a result, the use of centralized
cloud resources for real-time |oT data processing is becoming more and more expensive and
lengthening the latency in data processing.



Edge computing provides a more effective way to leverage ML-based anomaly detection. By
shifting critical data processing workloads closer to the data source (IoT devices), you can reduce
workloads on the cloud; ensure zero-latency data processing; improve response time; and decrease
network load and cloud costs.

Edge computing can be also used to monitor machine health in real time to detect anomalies that
might indicate a failure in a system. Zero-latency data processing makes it possible to report major
incidents in near-real time and prevent system failures.

EDGE COMPUTING ARCHITECTURE

There are several types of edge computing architectural models used in the industry, including 100
percent edge computing and hybrid models that combine edge and cloud computing. A generic
architecture of this type is shown in Figure 1.

Edge Computing

loT Devices

Figure 1: A generic architecture including edge computing and cloud computing

In this model, the loT Gateway collects and receives data from loT Devices using various |oT data
protocols and pushes data to a Messaging layer. Data Processing components at the edge pull data
from the Messaging layer, process it, and send insights to the Cloud for centralized alerting and
reporting. A Monitor & Manage element reports operational issues to the Cloud and ensures that
components are in synch with the configuration data centrally managed from the Cloud.

EDGE COMPUTING DEPLOYMENT

The deployment of edge computing components, which can be based on scalability requirements,
can be deployed together in a single board computer like Raspberry Pi, or across multiple devices in
the same data center for greater scalability.



REAL-TIME 10T DATA ANOMALY DETECTION

Figure 2 shows an architecture to implement edge computing for anomaly detection. This model is
similar to the generic architecture described in Figure 1 with added intelligence.

Edge Computing

loT Devices

() 4
SMQTT
In LEIJJ&E:I':E :: aT Messaging

Figure 2: Edge computing for real-time anomaly detection

In this model, an Intelligent loT Gateway acts as a timeseries data router. The Messaging layer has
separate queues for each anomaly detection method. Based on the anomaly detection methods
being applied to specific timeseries, the Intelligent loT Gateway makes routing decisions and puts
data into the respective queues. Dynamic routing decisions are driven by the configuration.
Configuration changes are made at the Cloud and applied on the Intelligent lIoT Gateway by the
Monitor & Manage element.

Anomaly Detection processors fetch data from the respective queues, detect anomalies, and report
them to the Cloud. These processors also store timeseries into a Timeseries DB.

An Offline Training scheduled job periodically fetches bulk data from the timeseries DB,
compresses data, and sends it to the Cloud to train ML models for supervised anomaly detection.
The job also fetches ML models from the Cloud and stores them in an ML Models DB. A Supervised
ML Anomaly Detector fetches ML models from the ML Models DB.

The Monitor & Manage element reports operational issues to the Cloud and ensures that
components are in synch with the configuration data centrally managed from the Cloud.

CONCLUSION

The data volumes and velocity of a modern loT implementation call for scalable, efficient, real-time
anomaly detection. Edge computing makes it possible to leverage machine learning for loT anomaly
detection while avoiding high cloud costs and processing latency. By using the architecture
described above, you can detect and resolve loT failures quickly to ensure optimal service for your
organization.



