
DOCKER SECURITY: 14 BEST PRACTICES FOR SECURING
DOCKER CONTAINERS

Containerization of applications involves packaging application code in a virtual container with its
dependencies—the required libraries, frameworks, and configuration files. This approach aids
portability and operates consistently across various computing environments and infrastructure,
without losing efficiency.

One particularly popular container platform is Docker. Organizations use Docker for developing
applications that are:

Efficiently optimized
Highly scalable
Portable
Agile

Through its lightweight run-time environments, Docker containers share underlying operating
systems to host applications that support a DevOps environment. Being a critical element of the
Cloud-Native framework, Docker brings numerous benefits to your software development lifecycle
(SDLC). But those benefits aren’t without risk. You’re likely to face complexities, particularly when it
comes to securing the Docker framework.

By default, Docker containers are secure. However, it is imperative that you know possible
vulnerabilities in order to adopt an approach that safeguards against potential security risks.

So, in this article, we’ll look at the best practices for securing a Docker-based architecture across
three key areas:

https://blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://blogs.bmc.com/blogs/docker-101-introduction/
https://blogs.bmc.com/blogs/devops-basics-introduction/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://blogs.bmc.com/blogs/security-vulnerability-vs-threat-vs-risk-whats-difference/


Infrastructure
Images
Access and authentication

Let’s get started.









(



This is part of



our Docker Guide. Use the right-hand menu to navigate.)

Securing Docker infrastructure
Containers are virtualized units that can host applications. To do so, containers hold:

Code binaries
Configuration files
Related dependencies

Since containers form the foundation of a cloud-native setup, securing them from potential attack
vectors is a critical activity throughout the container lifecycle. A holistic approach to securing such a
framework is to protect not only the Docker container but also its underlying infrastructure.

Let’s break down the best approach to securing infrastructure and see how it works.

Update your Docker version regularly
First things first: Ensure that your Docker version is up to date. Obsolete versions are susceptible to
security attacks. New version releases often contain patches and bug fixes that address
vulnerabilities of older versions.

The same holds true for the host environment: ensure that supporting applications are up-to-date
and free of known bugs or security loopholes.

Maintain lean & clean containers
An extended container environment expands the attack surface and is comparatively more prone to
security breaches than lean setups. To avoid this, configure your containers to contain only the
necessary components that keep them operating as you intend:

Software packages
Libraries
Configuration files

Further, routinely check host instances for unused containers and base images and discard those
that aren’t in use.

Configure APIs & network
Docker Engine uses HTTP APIs to communicate across a network. Poorly configured APIs carry
security flaws that hackers can exploit.

To avoid this, protect your containers by securely configuring the API that restricts them from being
publicly exposed. One approach is to enforce encrypted communication by enabling certificate-
based authentication.

(Get more details on securing Docker APIs.)

https://bmcmktg.atlassian.net/browse/WEB-9619
https://blogs.bmc.com/blogs/getting-started-cloud-native-applications/
https://blogs.bmc.com/blogs/patch-hotfix-coldfix-bugfix/
https://blogs.bmc.com/blogs/microservice-vs-api/
https://docs.docker.com/engine/api/v1.40/


Limit usage of system resources
Set a limit on the proportion of infrastructure resources that each container can use. These
infrastructure resources include:

CPU
Memory
Network bandwidth

Docker uses Control Groups that limits the allocation and distribution of resources among the
different processes. This approach prevents a compromised container from consuming excessive
resources that could disrupt service delivery in the event of a security breach.

Maintain host isolation
Run containers with different security requirements on separate hosts.

Maintaining the isolation of containers through different namespaces serves to protect critical data
from a full-blown attack. This approach also prevents noisy neighbors from consuming excessive
resources on pool-based isolation to impact services of other containers.

Restrict container capabilities
By default, Docker containers can maintain and acquire additional privileges that may or may not be
necessary to run its core services.

As a best practice, you should limit a container’s permissions to only what is required to run its
applications. To do so, use the command to drop all privileges of the Docker container:

$ docker run --cap-drop ALL

Following this, add specific privileges to the container with the --cap-add flag. This approach
restricts Docker containers from obtaining unnecessary privileges that get exploited during security
breaches.

Filter system calls
Apply system call filters that allow you to choose which calls can be made by containers to the
Linux kernel.

This approach enables a secure computing mode, thereby reducing possible exposure points to
avoid security mishaps—particularly to avert exploitation of Kernel vulnerabilities.

Securing Docker images
Now, let’s move to security best practices beyond the infrastructure.

Docker images are templates of executable code that are used to create containers and host
applications. A Docker image consists of runtime libraries and the root file system—making the
image one of the most critical fundamentals of a Docker container.

Here are some best practices to follow when it comes to securing Docker images.



Use trusted image
Get Docker base images only from trusted sources that are up-to-date and properly configured.

Additionally, ensure Docker images are correctly signed by enabling the Docker Content Trust
feature to filter out unsecured questionable sources.

Scan images regularly
It is crucial to maintain a robust security profile of Docker Images and routinely scan them for
vulnerabilities. Do this in addition to the initial scan before downloading an image to ensure it is safe
to use.

With regular image scans, you can also minimize exposure by:

Auditing critical files and directories
Keeping them updated with the latest security patches

Favor minimal base images
Avoid using larger generic Docker Images over smaller ones to minimize security vulnerabilities. This
offers two valuable outcomes:

Reduces the attack surface
Gets rid of default configurations that are more susceptible to hacks

Access & Authentication Management
The final category for Docker Security involves access and authentication.

Securing Docker Daemon through Access Control is often known as applying the first layer of
security. Without securing Docker Daemon, everything is always vulnerable:

The underlying operations
Applications
Business functions

Implement least privileged user
By default, processes within Docker containers have root privileges that grant them administrative
access to both the container and the host. This opens up containers and the underlying host to
security vulnerabilities that hackers might exploit.

To avoid these vulnerabilities, set up a least-privileged user that grants only the necessary privileges
to run containers. Alternatively, restrict run-time configurations that prohibit the use of a privileged
user.

Use a secrets management tool
Never store secrets in a Dockerfile that may allow a user with access to the Dockerfile to misplace,
misuse, or compromise an entire framework’s security.



Standard best practice is to safely encrypt key secrets in third-party tools, such as the Hashicorp
Vault. You can use this same approach for other container secrets beyond access credentials.

Limit direct access to container files
Transient containers require consistent upgrades and bug fixes. As a result, such container files are
exposed each time a user accesses them.

As a best practice, maintain container logs outside the container. This drastically reduces consistent
direct usage of container files. It also enables your team to troubleshoot issues without accessing
logs within a container directory.

Enable encrypted communication
Limit Docker Daemon’s access to only a handful of key users. Additionally, limit direct access to
container files by enforcing SSH-only access for general users.

Use TLS Certificates for encrypting host-level communication. It’s also essential to disable unused
ports and keep default ports exposed only for internal use.

Securing Docker secures your IT environment
Security within an IT landscape is a critical mission that you should never overlook.

To secure a cloud-native framework, the first step always is to factor in the vulnerabilities of your
framework’s key elements. As a result, organizations should maintain a robust security profile that
centers around containers and their underlying infrastructure.

Though approaches to implementing end-to-end security may differ, the goal is always to factor in
vulnerable points and adopt best practices that mitigate risks.

RELATED READING
BMC DevOps Blog
BMC Multi-Cloud Blog
Docker Management Tips
Kubernetes vs Docker: A Quick Comparison
How To Run MongoDB as a Docker Container

https://www.vaultproject.io/
https://www.vaultproject.io/
https://blogs.bmc.com/blogs/categories/devops/
https://blogs.bmc.com/blogs/categories/cloud/
https://blogs.bmc.com/blogs/got-docker-4-docker-management-tips/
https://blogs.bmc.com/blogs/kubernetes-vs-docker/
https://blogs.bmc.com/blogs/mongodb-docker-container/

